Flow reactor approach for the facile and continuous synthesis of efficient Pd@Pt core-shell nanoparticles for acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines

被引:9
作者
Poly, Sharmin Sultana [1 ]
Hashiguchi, Yuta [2 ]
Sultana, Asima [1 ]
Nakamura, Isao [1 ]
Shimizu, Ken-ichi [3 ]
Yasumura, Shunsaku [3 ]
Fujitani, Tadahiro [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol Tsukuba, Interdisciplinary Res Ctr Catalyt Chem, Tsukuba, Ibaraki 3058565, Japan
[2] Res Assoc High Throughput Design & Dev Adv Funct, Tsukuba, Ibaraki 3058565, Japan
[3] Hokkaido Univ, Inst Catalysis, N-21,W-10, Sapporo, Hokkaido 0010021, Japan
关键词
Acceptorless dehydrogenative coupling; Multicomponent reaction; Pyrimidines; Flow reactor; Core-shell catalyst; STRUCTURAL-CHARACTERIZATION; O-AMINOBENZAMIDES; CATALYSTS; QUINOLINES; OXIDATION; REDUCTION; METAL; ALLOY; DERIVATIVES; FABRICATION;
D O I
10.1016/j.apcata.2021.118158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon supported Pd@Pt core-shell nanoparticles catalyst was prepared in a flow reactor toachieve enhanced catalytic activities with low Pt loading for the acceptorless dehydrogenative synthesis of pyrimidines. Spectroscopic (XAS analysis) and microscopic (HAADF-STEM) techniques reveled that the core-shell structure was formed by the applied preparation method. The Pd@Pt/PVP (polyvinylpyrrolidone)/C catalyst showed the activity for the three component one pot synthesis of pyrimidines through a series of consecutive reactions including oxidation of alcohols, C?C, and C?N coupling, followed by heterocyclization and dehydrogenation employing various primary alcohols, secondary alcohols, and amidines. The reaction mechanism on Pd@Pt/ PVP/C catalyst was explored by comparison with the control experiments.
引用
收藏
页数:8
相关论文
共 84 条
[1]   Synthesis, analgesic, and antiparkinsonian profiles of some pyridine, pyrazoline, and thiopyrimidine derivatives [J].
Abdel-Latif, Nehad A. ;
Sabry, Nermien M. ;
Mohamed, Ashraf M. ;
Abdulla, Mohamed M. .
MONATSHEFTE FUR CHEMIE, 2007, 138 (07) :715-724
[2]  
Adhikari, 2019, CATAL SCI TECHNOL, V9, P9051
[3]   Synthesis of substituted indole derivatives as a new class of antimalarial agents [J].
Agarwal, A ;
Srivastava, K ;
Puri, SK ;
Chauhan, PMS .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2005, 15 (12) :3133-3136
[4]   Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives [J].
Amr, Abdel-Galil E. ;
Mohamed, Ashraf M. ;
Mohamed, Salwa F. ;
Abdel-Hafez, Nagla A. ;
Hammam, Abu El-Fotooh G. .
BIOORGANIC & MEDICINAL CHEMISTRY, 2006, 14 (16) :5481-5488
[5]  
ANDERSEN JM, 1978, J BIOL CHEM, V253, P9024
[6]  
Asif M.A., 2017, Int. J. Bioorg. Chem, V2, P146, DOI [DOI 10.11648/J.IJBC.20170203.20, 10.11648/j.ijbc.20170203.20]
[7]  
Azas Nadine, 2003, Farmaco (Lausanne), V58, P1263, DOI 10.1016/j.farmac.2003.07.009
[8]   A convenient, highly selective and eco-friendly N-Boc protection of pyrimidines under microwave irradiation [J].
Bessieres, Maxime ;
Roy, Vincent ;
Agrofoglio, Luigi A. .
RSC ADVANCES, 2014, 4 (104) :59747-59749
[9]   The effect of the stabilizer on the properties of a synthetic Nicore-Ptshell catalyst for PEM fuel cells [J].
Bhlapibul, Saowaluck ;
Pruksathorn, Kejvalee ;
Piumsomboon, Pornpote .
RENEWABLE ENERGY, 2012, 41 :262-266
[10]  
Brown, 1962, PYRIMIDINES, V139, P29