Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells

被引:64
|
作者
He, Donglin [1 ]
Liu, Guoliang [1 ,2 ]
Wang, Ailian [3 ]
Ji, Wenxi [3 ]
Wu, Jianing [3 ]
Tang, Haolin [1 ,2 ]
Lin, Weiran [4 ]
Zhang, Taoyi [3 ]
Zhang, Haining [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Foshan Xianhu Lab, Foshan 528200, Peoples R China
[3] Sinopec Beijing Res Inst Chem Ind Co Ltd, Beijing 100013, Peoples R China
[4] Tsinghua Univ, Fundamental Ind Training Ctr, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
Alkali-free quaternization; Polybenzimidazole; Phosphoric acid retention; Proton exchange membrane fuel cells; High-temperature; COMPOSITE MEMBRANES; IONIC LIQUID; CONDUCTIVITY; PEM;
D O I
10.1016/j.memsci.2022.120442
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Although phosphoric acid doped polybenzimidazole has been proposed as promising high-temperature proton exchange membrane, the poor absorption and immobilization ability of phosphoric acid in the membrane hinders its long-term stability. In this work, high-temperature proton exchange membranes with high phosphoric acid uptake and retention ability are fabricated thorough solvent casting of an alkali-free quaternized poly(4,4'-diphenylether-5,5'-bibenzimidazole) (OPBI), followed by doping of phosphoric acid. The optimized membrane with quaternization degree of 50% possesses a high acid-doping-level of 18.8 and an anhydrous conductivity of 85 mS cm(-1) at 160 degrees C. Stability tests reveal that anhydrous proton conductivity remains unchanged during continuous 100 h treatment at 160 degrees C and it remains 91.7% of its initial value after 100 h treatment at 80 degrees C under 40% RH. The thus-assembled single cell exhibits the maximum power density values of 0.355, 0.495, and 0.584 Wcm(-2) at 160 degrees C under back pressure of 0, 100, and 200 kPa using hydrogen as fuel and air as oxidant gas.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications
    Escorihuela, Jorge
    Olvera-Mancilla, Jessica
    Alexandrova, Larissa
    del Castillo, L. Felipe
    Compan, Vicente
    POLYMERS, 2020, 12 (09)
  • [32] Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells
    Han, Miaomiao
    Zhang, Gang
    Liu, Zhongguo
    Wang, Shuang
    Li, Mingyu
    Zhu, Jing
    Li, Hongtao
    Zhang, Yang
    Lew, Christopher M.
    Na, Hui
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (07) : 2187 - 2193
  • [33] Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells
    Xu, Zhongming
    Chen, Nanjie
    Huang, Sheng
    Wang, Shuanjin
    Han, Dongmei
    Xiao, Min
    Meng, Yuezhong
    MOLECULES, 2024, 29 (18):
  • [34] Nanocomposite Membranes based on Polybenzimidazole and ZrO2 for High-Temperature Proton Exchange Membrane Fuel Cells
    Nawn, Graeme
    Pace, Giuseppe
    Lavina, Sandra
    Vezzu, Keti
    Negro, Enrico
    Bertasi, Federico
    Polizzi, Stefano
    Di Noto, Vito
    CHEMSUSCHEM, 2015, 8 (08) : 1381 - 1393
  • [35] Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells
    Xue, Chao
    Zou, Jing
    Sun, Zhaonan
    Wang, Fanghui
    Han, Kefei
    Zhu, Hong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (15) : 7931 - 7939
  • [36] Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Chen, Jianuo
    Byun, Jae Jong
    Perez-Page, Maria
    Ji, Zhaoqi
    Zhao, Ziyu
    Holmes, Stuart M.
    JOURNAL OF MEMBRANE SCIENCE, 2022, 641
  • [37] Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives
    Qu, Erli
    Hao, Xiaofeng
    Xiao, Min
    Han, Dongmei
    Huang, Sheng
    Huang, Zhiheng
    Wang, Shuanjin
    Meng, Yuezhong
    JOURNAL OF POWER SOURCES, 2022, 533
  • [38] Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature
    Shabanikia, Akbar
    Javanbakht, Mehran
    Amoli, Hossein Salar
    Hooshyari, Khadijeh
    Enhessari, Morteza
    ELECTROCHIMICA ACTA, 2015, 154 : 370 - 378
  • [39] Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes
    Jiao, Kui
    Alaefour, Ibrahim E.
    Li, Xianguo
    FUEL, 2011, 90 (02) : 568 - 582
  • [40] Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes
    Schonvogel, Dana
    Belack, Joerg
    Vidakovic, Jurica
    Schmies, Henrike
    Uhlig, Lisa M.
    Langnickel, Hendrik
    Tung, Patrick Kin Man
    Meyer, Quentin
    Zhao, Chuan
    Wagner, Peter
    JOURNAL OF POWER SOURCES, 2024, 591