Defining the underlying defect in insulin action in type 2 diabetes

被引:123
作者
Batista, Thiago M. [1 ]
Haider, Nida [1 ]
Kahn, C. Ronald [1 ]
机构
[1] Harvard Med Sch, Joslin Diabet Ctr, Sect Integrat Physiol & Metab, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Cell-autonomous; Insulin action; Insulin resistance; iPS cells; Phosphorylation; Review; The metabolic syndrome; Tissue crosstalk; Type; 2; diabetes;
D O I
10.1007/s00125-021-05415-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Insulin resistance is one of the earliest defects in the pathogenesis of type 2 diabetes. Over the past 50 years, elucidation of the insulin signalling network has provided important mechanistic insights into the abnormalities of glucose, lipid and protein metabolism that underlie insulin resistance. In classical target tissues (liver, muscle and adipose tissue), insulin binding to its receptor initiates a broad signalling cascade mediated by changes in phosphorylation, gene expression and vesicular trafficking that result in increased nutrient utilisation and storage, and suppression of catabolic processes. Insulin receptors are also expressed in non-classical targets, such as the brain and endothelial cells, where it helps regulate appetite, energy expenditure, reproductive hormones, mood/behaviour and vascular function. Recent progress in cell biology and unbiased molecular profiling by mass spectrometry and DNA/RNA-sequencing has provided a unique opportunity to dissect the determinants of insulin resistance in type 2 diabetes and the metabolic syndrome; best studied are extrinsic factors, such as circulating lipids, amino acids and other metabolites and exosomal microRNAs. More challenging has been defining the cell-intrinsic factors programmed by genetics and epigenetics that underlie insulin resistance. In this regard, studies using human induced pluripotent stem cells and tissues point to cell-autonomous alterations in signalling super-networks, involving changes in phosphorylation and gene expression both inside and outside the canonical insulin signalling pathway. Understanding how these multi-layered molecular networks modulate insulin action and metabolism in different tissues will open new avenues for therapy and prevention of type 2 diabetes and its associated pathologies.
引用
收藏
页码:994 / 1006
页数:13
相关论文
共 120 条
[1]  
[Anonymous], 1922, Can Med Assoc J, V12, P425
[2]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[3]   Non-CpG Methylation of the PGC-1α Promoter through DNMT3B Controls Mitochondrial Density [J].
Barres, Romain ;
Osler, Megan E. ;
Yan, Jie ;
Rune, Anna ;
Fritz, Tomas ;
Caidahl, Kenneth ;
Krook, Anna ;
Zierath, Juleen R. .
CELL METABOLISM, 2009, 10 (03) :189-198
[4]   A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes [J].
Batista, Thiago M. ;
Jayavelu, Ashok Kumar ;
Albrechtsen, Nicolai J. Wewer ;
Iovino, Salvatore ;
Lebastchi, Jasmin ;
Pan, Hui ;
Dreyfuss, Jonathan M. ;
Krook, Anna ;
Zierath, Juleen R. ;
Mann, Matthias ;
Kahn, C. Ronald .
CELL METABOLISM, 2020, 32 (05) :844-+
[5]   Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver [J].
Batista, Thiago M. ;
Dagdeviren, Sezin ;
Carroll, Shannon H. ;
Cai, Weikang ;
Melnik, Veronika Y. ;
Noh, Hye Lim ;
Saengnipanthkul, Suchaorn ;
Kim, Jason K. ;
Kahn, C. Ronald ;
Lee, Richard T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (12) :6733-6740
[6]   Multi-dimensional Transcriptional Remodeling by Physiological Insulin In Vivo [J].
Batista, Thiago M. ;
Garcia-Martin, Ruben ;
Cai, Weikang ;
Konishi, Masahiro ;
O'Neill, Brian T. ;
Sakaguchi, Masaji ;
Kim, Jong Hun ;
Jung, Dae Young ;
Kim, Jason K. ;
Kahn, C. Ronald .
CELL REPORTS, 2019, 26 (12) :3429-+
[7]   Insulin Receptor Isoforms in Physiology and Disease: An Updated View [J].
Belfiore, Antonino ;
Malaguarnera, Roberta ;
Vella, Veronica ;
Lawrence, Michael C. ;
Sciacca, Laura ;
Frasca, Francesco ;
Morrione, Andrea ;
Vigneri, Riccardo .
ENDOCRINE REVIEWS, 2017, 38 (05) :379-431
[8]   PI3K isoforms in cell signalling and vesicle trafficking [J].
Bilanges, Benoit ;
Posor, York ;
Vanhaesebroeck, Bart .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2019, 20 (09) :515-534
[9]   Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes [J].
Bouzakri, K ;
Roques, M ;
Gual, P ;
Espinosa, S ;
Guebre-Egziabher, F ;
Riou, JP ;
Laville, M ;
Le Marchand-Brustel, Y ;
Tanti, JF ;
Vidal, H .
DIABETES, 2003, 52 (06) :1319-1325
[10]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965