DOA-Based Endoscopy Capsule Localization and Orientation Estimation via Unscented Kalman Filter

被引:57
|
作者
Goh, Shu Ting [1 ]
Zekavat, Seyed A. [2 ]
Pahlavan, Kaveh [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
[3] Worcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
关键词
Kalman filters; directional-of-arrival; capsule endoscopy; body sensor networks; WIRELESS; TRACKING; ARRAY; POSITION; SYSTEMS; FUSION;
D O I
10.1109/JSEN.2014.2342720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The endoscopy capsule is a medical device capable of capturing images inside human's digestion system, specifically the small and big intestine. For medical diagnostics and surgery, it is required to know the position and direction of the image taken inside digestion system. This paper considers an alternative method of presurgery gastroscopy and colonoscopy monitoring procedure that allows the patient to freely move inside the medical ward. The direction-of-arrival (DOA) and inertial measurement unit (IMU) measurements are integrated to track the movement of capsule with respect to patient's body reference frame. The DOA is estimated via antenna arrays installed within a medical ward and the IMU is installed on the capsule endoscopy. The IMU sends the position information wirelessly to the antenna arrays in medical ward. Additional beacons are attached to the patient to allow body orientation and absolute position estimation due to the free movement. The nonhomogeneous nature of human body refracts the signal transmitted by the capsule, which leads to a highly nonlinear DOA function. This paper implements the unscented Kalman filter (UKF) to track the capsule by fusing the measurements made by DOA, IMU, and additional beacons attached to the patient. Simulations are conducted to investigate the capsule tracking and orientation estimation performance with respect to DOA resolution and beacons localization accuracy. Results confirm that compared with the DOA resolution, the beacons localization accuracy has a higher impact on the capsule orientation estimation performance. Furthermore, this paper investigates the impact of the number of available antenna arrays on multiplication required by UKF.
引用
收藏
页码:3819 / 3829
页数:11
相关论文
共 50 条
  • [1] A Localization Based on Unscented Kalman Filter and Particle Filter Localization Algorithms
    Ullah, Inam
    Shen, Yu
    Su, Xin
    Esposito, Christian
    Choi, Chang
    IEEE ACCESS, 2020, 8 : 2233 - 2246
  • [2] Variational Bayesian Adaptive Unscented Kalman Filter for RSSI-based Indoor Localization
    Yang, Bo
    Jia, Xinchun
    Yang, Fuwen
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (03) : 1183 - 1193
  • [3] A quaternion-based unscented Kalman filter for orientation tracking
    Kraft, E
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 47 - 54
  • [4] Unscented Kalman Filter Based Attitude Estimation with MARG Sensors
    Zhang, Zeliang
    Zhou, Zebo
    Du, Shuang
    Xiang, Changgan
    Kuang, Changhong
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2019 PROCEEDINGS, VOL II, 2019, 563 : 490 - 502
  • [5] Constrained Kalman Filter for Localization and Tracking Based on TDOA and DOA Measurements
    Cao, Yi-chao
    Fang, Jian-an
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2009, : 28 - 33
  • [6] A NOVEL APPROACH FOR MULTIPATH CHANNEL ESTIMATION IN CDMA NETWORKS USING THE UNSCENTED KALMAN FILTER
    Ali, Zahid
    Deriche, Mohammad
    Andalusi, Andan
    WOCN: 2009 IFIP INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS NETWORKS, 2009, : 295 - 299
  • [7] Adaptive Unscented Kalman Filter for Robot Navigation Problem (Adaptive Unscented Kalman Filter Using Incorporating Intuitionistic Fuzzy Logic for Concurrent Localization and Mapping)
    Fang, Yong
    Panah, Amir
    Masoudi, Javad
    Barzegar, Behnam
    Fatehi, Saeed
    IEEE ACCESS, 2022, 10 : 101869 - 101879
  • [8] An Improved Node Localization Based on Adaptive Iterated Unscented Kalman Filter for WSN
    Ou, Xianhua
    Wu, Xianqing
    He, Xiongxiong
    Chen, Zhongtian
    Yu, Qun-ai
    PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2015, : 393 - 398
  • [9] HMM Based Adaptive Kalman Filter for Orientation Estimation
    Li, Peng
    Zhang, Wen-An
    Zhang, Jun-Hao
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 17065 - 17074
  • [10] A Novel State-of-Health Estimation for Lithium-Ion Battery via Unscented Kalman Filter and Improved Unscented Particle Filter
    Zhu, Feng
    Fu, Jingqi
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25449 - 25456