Evolution of Entanglement Spectra under Generic Quantum Dynamics

被引:23
作者
Chang, Po-Yao [1 ,2 ,3 ]
Chen, Xiao [4 ]
Gopalakrishnan, Sarang [5 ]
Pixley, J. H. [3 ]
机构
[1] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[5] CUNY Coll Staten Isl, Dept Phys & Astron, Staten Isl, NY 10314 USA
关键词
THERMALIZATION;
D O I
10.1103/PhysRevLett.123.190602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize the early stages of the approach to equilibrium in isolated quantum systems through the evolution of the entanglement spectrum. We find that the entanglement spectrum of a subsystem evolves with three distinct timescales. First, on an o(1) timescale, independent of system or subsystem size and the details of the dynamics, the entanglement spectrum develops nearest-neighbor level repulsion. The second timescale sets in when the light cone has traversed the subsystem. Between these two times, the density of states of the reduced density matrix takes a universal, scale-free 1/f form; thus, random-matrix theory captures the local statistics of the entanglement spectrum but not its global structure. The third time scale is that on which the entanglement saturates; this occurs well after the light cone traverses the subsystem. Between the second and third times, the entanglement spectrum compresses to its thermal Marchenko-Pastur form. These features hold for chaotic Hamiltonian and Floquet dynamics as well as a range of quantum circuit models.
引用
收藏
页数:6
相关论文
共 39 条
[1]  
[Anonymous], 1972, STAT MECH
[2]  
[Anonymous], ARXIV180200801
[3]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[4]   Entanglement Spreading in a Minimal Model of Maximal Many-Body Quantum Chaos [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW X, 2019, 9 (02)
[5]   Massively parallel implementation and approaches to simulate quantum dynamics using Krylov subspace techniques [J].
Brenes, Marlon ;
Varma, Vipin Kerala ;
Scardicchio, Antonello ;
Girotto, Ivan .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 235 :477-488
[6]   Thermalization and Revivals after a Quantum Quench in Conformal Field Theory [J].
Cardy, John .
PHYSICAL REVIEW LETTERS, 2014, 112 (22)
[7]   Emergent Irreversibility and Entanglement Spectrum Statistics [J].
Chamon, Claudio ;
Hamma, Alioscia ;
Mucciolo, Eduardo R. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[8]   Solution of a Minimal Model for Many-Body Quantum Chaos [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW X, 2018, 8 (04)
[9]   Spectral Statistics in Spatially Extended Chaotic Quantum Many-Body Systems [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW LETTERS, 2018, 121 (06)
[10]   Quantum chaos dynamics in long-range power law interaction systems [J].
Chen, Xiao ;
Zhou, Tianci .
PHYSICAL REVIEW B, 2019, 100 (06)