An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes

被引:88
作者
Burman, Erik [1 ]
Fernandez, Miguel A. [2 ,3 ]
机构
[1] UCL, Dept Math, London WC1E 6BT, England
[2] Inst Natl Rech Informat & Automat, REO Project Team, F-78153 Le Chesnay, France
[3] Univ Paris 06, REO Project Team, UMR LJLL 7958, F-75005 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
Fluid-structure interaction; Incompressible fluid; Unfitted meshes; Fictitious domain method; Nitsche method; Coupling schemes; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.cma.2014.07.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the extension of the Nitsche method to the case of fluid structure interaction problems on unfitted meshes. We give a stability analysis for the space semi-discretized problem and show how this estimate may be used to derive optimal error estimates for smooth solutions, irrespectively of the mesh/interface intersection. We also discuss different strategies for the time discretization, using either fully implicit or explicit coupling (loosely coupled) schemes. Some numerical examples illustrate the theoretical discussion. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:497 / 514
页数:18
相关论文
共 30 条
[1]  
Baaijens FPT, 2001, INT J NUMER METH FL, V35, P743, DOI 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO
[2]  
2-A
[3]   A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) :3352-3360
[4]   On the hyper-elastic formulation of the immersed boundary method [J].
Boffi, Daniele ;
Gastaldi, Lucia ;
Heltai, Luca ;
Peskin, Charles S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (25-28) :2210-2231
[5]  
Brezzi F., 1984, EFFICIENT SOLUTIONS, P11
[6]  
Burman E., 2014, INT J NUMER ME UNPUB
[7]   FICTITIOUS DOMAIN METHODS USING CUT ELEMENTS: III. A STABILIZED NITSCHE METHOD FOR STOKES' PROBLEM [J].
Burman, Erik ;
Hansbo, Peter .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03) :859-874
[8]   Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling [J].
Burman, Erik ;
Fernandez, Miguel A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (10) :739-758
[9]   Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method [J].
Burman, Erik ;
Hansbo, Peter .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :328-341
[10]   Ghost penalty [J].
Burman, Erik .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (21-22) :1217-1220