An Iterative Method for Solving the Multiple-Sets Split Variational Inequality Problem

被引:5
作者
Tran Luu Cuong [1 ]
Tran Viet Anh [2 ]
机构
[1] Van Lang Univ, Fac Basic Sci, 69-68 Dang Thuy Tram St,Ward 13, Ho Chi Minh City, Vietnam
[2] Posts & Telecommun Inst Technol, Dept Sci Fundamentals, Hanoi, Vietnam
关键词
Multiple-sets split variational inequality problem; Minimum-norm solution; Strong convergence; Multiple-sets split feasibility problem; SUBGRADIENT EXTRAGRADIENT METHOD; FEASIBILITY PROBLEM; PROJECTION METHODS; STRONG-CONVERGENCE; ALGORITHMS;
D O I
10.1007/s40840-022-01283-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce a new algorithm for finding the minimum-norm solution of the multiple-sets split variational inequality problem in real Hilbert spaces. The strong convergence of the iterative sequence generated by the algorithm method is established under the condition that the mappings are monotone and Lipschitz continuous. We apply our main result to study the minimum-norm solution of the multiple-sets split feasibility problem and the split variational inequality problem. Finally, a numerical example is given to illustrate the proposed algorithm.
引用
收藏
页码:1737 / 1755
页数:19
相关论文
共 48 条
[1]  
Adamu Abubakar, 2021, Nonlinear Functional Analysis and Applications, V26, P411, DOI 10.22771/nfaa.2021.26.02.12
[2]  
Afassinou Komi, 2020, Nonlinear Functional Analysis and Applications, V25, P491, DOI 10.22771/nfaa.2020.25.03.06
[3]  
ANH PN, 2009, ACTA MATH VIETNAMICA, V34, P67
[4]   Algorithms for a class of bilevel programs involving pseudomonotone variational inequalities [J].
Dinh B.V. ;
Muu L.D. .
Acta Mathematica Vietnamica, 2013, 38 (4) :529-540
[6]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[7]   Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem [J].
Ceng, L. -C. ;
Ansari, Q. H. ;
Yao, J. -C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2116-2125
[8]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[9]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[10]  
Censor Y, 1994, Numerical Algorithms, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]