A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems

被引:76
作者
Cholamjiak, Prasit [1 ]
Duong Viet Thong [2 ]
Cho, Yeol Je [3 ,4 ]
机构
[1] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[2] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
Inertial contraction projection method; Mann-type method; Pseudomonotone mapping; Pseudomonotone variational inequality problem; SUBGRADIENT EXTRAGRADIENT METHOD; MAXIMAL MONOTONE-OPERATORS; PROXIMAL POINT ALGORITHM; STRONG-CONVERGENCE; HEMIVARIATIONAL INEQUALITIES; ITERATIVE METHODS; WEAK-CONVERGENCE; GRADIENT METHODS; WELL-POSEDNESS; HYBRID METHOD;
D O I
10.1007/s10440-019-00297-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new algorithm which combines the inertial contraction projection method and the Mann-type method (Mann in Proc. Am. Math. Soc. 4:506-510, 1953) for solving monotone variational inequality problems in real Hilbert spaces. The strong convergence of our proposed algorithm is proved under some standard assumptions imposed on cost operators. Finally, we give some numerical experiments to illustrate the proposed algorithm and the main result.
引用
收藏
页码:217 / 245
页数:29
相关论文
共 60 条
[1]   Extension of subgradient techniques for nonsmooth optimization in Banach spaces [J].
Alber, YI ;
Iusem, AN .
SET-VALUED ANALYSIS, 2001, 9 (04) :315-335
[2]   Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space [J].
Alvarez, F .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) :773-782
[3]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[4]  
[Anonymous], 1976, Matecon
[5]   The heavy ball with friction method, I. The continuous dynamical system: Global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system [J].
Attouch, H ;
Goudou, X ;
Redont, P .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (01) :1-34
[6]   Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria [J].
Attouch, H ;
Czarnecki, MO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :278-310
[7]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[8]  
Bot RI, 2016, MINIMAX THEORY APPL, V1, P29
[9]   An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) :600-616
[10]   An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Laszlo, Szilard Csaba .
EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) :3-25