Transformable Nanosensitizer with Tumor Microenvironment-Activated Sonodynamic Process and Calcium Release for Enhanced Cancer Immunotherapy

被引:230
作者
Tan, Xuan [1 ]
Huang, Jingzhao [1 ]
Wang, Yiqian [1 ]
He, Shasha [2 ]
Jia, Le [1 ]
Zhu, Yanhong [1 ]
Pu, Kanyi [2 ]
Zhang, Yan [1 ]
Yang, Xiangliang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Natl Engn Res Ctr Nanomed, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, 70 Nanyang Dr, Singapore 637457, Singapore
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Ca2+ overload; cancer sono-immunotherapy; immune checkpoint blockade; pH-regulated ROS generation; sonosensitizers; THERAPY; ULTRASOUND;
D O I
10.1002/anie.202102703
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the promise of sonodynamic processes in cancer therapy, existing sonosensitizers often fail to regulate the generation of reactive oxygen species (ROS) against tumors, potentially leading to off-target toxicity to normal tissues. We report a transformable core-shell nanosonosensitizer (TiO2@CaP) that reinvigorates ROS generation and dissolves its CaP shell to release Ca2+ in an acidic tumor microenvironment (TME) under ultrasound activation. Thus, TiO2@CaP acts as a smart nanosonosensitizer that specifically induces mitochondrial dysfunction via overloading intracellular Ca2+ ions to synergize with the sonodynamic process in the TME. TiO2@CaP substantially enhances immunogenic cell death, resulting in enhanced T-cell recruitment and infiltration into the immunogenic cold tumor (4T1). In conjunction with checkpoint blockade therapy (anti-PD 1), TiO2@CaP-mediated sonodynamic therapy elicits systemic antitumor immunity, leading to regression of non-treated distant tumors and inhibition of lung metastasis. This work paves the way to development of "smart" TME-activatable sonosensitizers with temporospatial control over antitumor responses.
引用
收藏
页码:14051 / 14059
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 2020, ANGEW CHEM, V132, P1699
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P14316
[3]  
[Anonymous], 2021, ANGEW CHEM, DOI [10.1002/ange.202008386, DOI 10.1002/ANGE.202008386]
[4]   Calcium Signaling and Reactive Oxygen Species in Mitochondria [J].
Bertero, Edoardo ;
Maack, Christoph .
CIRCULATION RESEARCH, 2018, 122 (10) :1460-1478
[5]   Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer [J].
Canavese, Giancarlo ;
Ancona, Andrea ;
Racca, Luisa ;
Canta, Marta ;
Dumontel, Bianca ;
Barbaresco, Federica ;
Limongi, Tania ;
Cauda, Valentina .
CHEMICAL ENGINEERING JOURNAL, 2018, 340 :155-172
[6]   Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication [J].
Dai, Chen ;
Zhang, Shengjian ;
Liu, Zhuang ;
Wu, Rong ;
Chen, Yu .
ACS NANO, 2017, 11 (09) :9467-9480
[7]   Long-Circulating Au-TiO2 Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer [J].
Deepagan, V. G. ;
You, Dong Gil ;
Um, Wooram ;
Ko, Hyewon ;
Kwon, Seunglee ;
Choi, Ki Young ;
Yi, Gi-Ra ;
Lee, Jun Young ;
Lee, Doo Sung ;
Kim, Kwangmeyung ;
Kwon, Ick Chan ;
Park, Jae Hyung .
NANO LETTERS, 2016, 16 (10) :6257-6264
[8]   A self-assembled carrier-free nanosonosensitizer for photoacoustic imaging-guided synergistic chemo-sonodynamic cancer therapy [J].
Dong, Caihong ;
Jiang, Qvzi ;
Qian, Xiaoqin ;
Wu, Wencheng ;
Wang, Wenping ;
Yu, Luodan ;
Chen, Yu .
NANOSCALE, 2020, 12 (09) :5587-5600
[9]   Multifunctional Bismuth Ferrite Nanocatalysts with Optical and Magnetic Functions for Ultrasound-Enhanced Tumor Theranostics [J].
Feng, Lili ;
Gai, Shili ;
He, Fei ;
Yang, Piaoping ;
Zhao, Yanli .
ACS NANO, 2020, 14 (06) :7245-7258
[10]   Approaches to treat immune hot, altered and cold tumours with combination immunotherapies [J].
Galon, Jerome ;
Bruni, Daniela .
NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (03) :197-218