共 50 条
Estimation under Cox proportional hazards model with covariates missing not at random
被引:4
|作者:
Guo, Lisha
[1
,2
,3
]
Hu, X. Joan
[3
]
Liu, Yanyan
[1
]
机构:
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] South Cent Univ Nationalities, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[3] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
基金:
美国国家科学基金会;
加拿大自然科学与工程研究理事会;
关键词:
Asymptotic normality;
consistency;
semiparametric maximum likelihood estimation;
supplementary information;
variance estimation;
62N01;
62N02;
62G20;
MAXIMUM-LIKELIHOOD;
REGRESSION;
CONSISTENCY;
D O I:
10.1080/03610926.2016.1197252
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper considers likelihood-based estimation under the Cox proportional hazards model in the situations where some covariate entries are missing not at random. Assuming the conditional distribution of the missing entries is known, we demonstrate the existence of the semiparametric maximum likelihood estimator of the model parameters, establish the consistency and weak convergence. By simulation, we examine the finite-sample performance of the estimation procedure, and compare the SPMLE with the one resulted from using an estimated conditional distribution of the missing entries. We analyze the data from a tuberculosis (TB) study applying the proposed approach for illustration.
引用
收藏
页码:8952 / 8972
页数:21
相关论文