Hua's theorem on prime squares in short intervals

被引:11
作者
Liu, JY [1 ]
Zhan, T [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 2000年 / 16卷 / 04期
关键词
Waring-Goldbach problem; Hua's theorem; prime; circle method;
D O I
10.1007/s101140000077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that every large integer N = 5(mod24) can be written as N = p(1)(2) + ... + p(5)(2) with each prime p(j) satisfying \p(j) - rootN/5\ less than or equal to N11/23+epsilon. This gives a short interval version of Hua's theorem on the quadratic Waring-Goldbach problem.
引用
收藏
页码:669 / 690
页数:22
相关论文
共 12 条
  • [1] DAVENPORT H, 1980, MULTIPLICATIVE THEOR
  • [2] PRIME-NUMBERS IN SHORT INTERVALS AND A GENERALIZED VAUGHAN IDENTITY
    HEATHBROWN, DR
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06): : 1365 - 1377
  • [3] HUA LK, 1957, ADDITIVE THEORY PRIM
  • [4] HUA LK, 1938, Q J MATH OXFORD SER, V9, P68
  • [5] Liu JY, 1996, ACTA ARITH, V77, P369
  • [6] Sums of five almost equal prime squares II
    Liu, JY
    Zhan, T
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (07): : 710 - 722
  • [7] Estimation of exponential sums over primes in short intervals I
    Liu, JY
    Zhan, T
    [J]. MONATSHEFTE FUR MATHEMATIK, 1999, 127 (01): : 27 - 41
  • [8] SMALL PRIME SOLUTIONS OF SOME ADDITIVE EQUATIONS
    LIU, MC
    TSANG, KM
    [J]. MONATSHEFTE FUR MATHEMATIK, 1991, 111 (02): : 147 - 169
  • [9] Pan C.D., 1991, FUNDAMENTALS ANAL NU
  • [10] Prachar K., 1957, Primzahlverteilung