Examinations on a three-dimensional differentiable vector field that equals its own curl

被引:2
|
作者
Ou, B [1 ]
机构
[1] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
curl; distribution; existence; uniqueness;
D O I
10.3934/cpaa.2003.2.251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a three-dimensional differentiable vector field f that equals its own curl. We prove that f is analytic and then establish an existence and uniqueness theorem for such a vector field satisfying a prescribed boundary condition. We also outline with a few variations Professor J. Ericksen's work on a unit vector field that equals its own curl.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 50 条
  • [1] Three-dimensional deformation in curl vector field
    Dan Zeng
    Da-yue Zheng
    Journal of Zhejiang University SCIENCE C, 2012, 13 : 565 - 572
  • [2] Three-dimensional deformation in curl vector field
    Zeng, Dan
    Zheng, Da-yue
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2012, 13 (08): : 565 - 572
  • [3] Asymptotic signature of a three-dimensional vector field
    Gambaudo, JM
    Ghys, E
    DUKE MATHEMATICAL JOURNAL, 2001, 106 (01) : 41 - 79
  • [4] Tomographic reconstruction of a three-dimensional magnetization vector field
    Donnelly, Claire
    Gliga, Sebastian
    Scagnoli, Valerio
    Holler, Mirko
    Raabe, Jorg
    Heyderman, Laura J.
    Guizar-Sicairos, Manuel
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [5] Building three-dimensional differentiable manifolds numerically
    Lindblom, Lee
    Rinne, Oliver
    Taylor, Nicholas W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
  • [6] Three-dimensional vector field visualization based on tensor decomposition
    Chinese Acad of Sciences, Beijing, China
    J Comput Sci Technol, 5 (452-460):
  • [7] Three-Dimensional Measurement of Light-Field Polarization Vector
    Cui, Boyu
    He, Zebin
    Wu, Qiannan
    Li, Kewu
    Wang, Zhibin
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (02)
  • [8] Holographic vector field electron tomography of three-dimensional nanomagnets
    Daniel Wolf
    Nicolas Biziere
    Sebastian Sturm
    David Reyes
    Travis Wade
    Tore Niermann
    Jonas Krehl
    Benedicte Warot-Fonrose
    Bernd Büchner
    Etienne Snoeck
    Christophe Gatel
    Axel Lubk
    Communications Physics, 2
  • [9] Three-Dimensional Vector Field Visualization Based on Tensor Decomposition
    梁训东
    李斌
    刘慎权
    JournalofComputerScienceandTechnology, 1996, (05) : 452 - 454
  • [10] Holographic vector field electron tomography of three-dimensional nanomagnets
    Wolf, Daniel
    Biziere, Nicolas
    Sturrnl, Sebastian
    Reyes, David
    Wade, Travis
    Niermann, Tore
    Krehl, Jonas
    Warot-Fonrose, Benedicte
    Buechner, Bernd
    Snoeck, Etienne
    Gatel, Christophe
    Lubk, Axel
    COMMUNICATIONS PHYSICS, 2019, 2