The volumetric barrier for semidefinite programming

被引:15
作者
Anstreicher, KM [1 ]
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
关键词
volumetric barrier; semidefinite programming; self-concordance;
D O I
10.1287/moor.25.3.365.12212
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the volumetric barrier for semidefinite programming, or "generalized" volumetric barrier, as introduced by Nesterov and Nemirovskii. We extend several fundamental properties of the Volumetric barrier for a polyhedral set to the semidefinite case. Our analysis facilitates a simplified proof of self-concordance for the semidefinite volumetric barrier, as well as for the combined volumetric-logarithmic barrier for semidefinite programming. For both of these barriers we obtain self-concordance parameters equal to those previously shown to hold in the polyhedral case.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [31] Semidefinite programming and combinatorial optimization
    Rendl, F
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (03) : 255 - 281
  • [32] REGULARIZATION METHODS FOR SEMIDEFINITE PROGRAMMING
    Malick, Jerome
    Povh, Janez
    Rendl, Franz
    Wiegele, Angelika
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 336 - 356
  • [33] OPTIMALITY CONDITIONS IN SEMIDEFINITE PROGRAMMING
    Penot, Jean-Paul
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) : 1174 - 1196
  • [34] On weighted centers for semidefinite programming
    Sturm, JF
    Zhang, SZ
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 126 (02) : 391 - 407
  • [35] SEMIDEFINITE PROGRAMMING AND RAMSEY NUMBERS
    Lidicky, Bernard
    Pfender, Florian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2328 - 2344
  • [36] The algebraic degree of semidefinite programming
    Nie, Jiawang
    Ranestad, Kristian
    Sturmfels, Bernd
    MATHEMATICAL PROGRAMMING, 2010, 122 (02) : 379 - 405
  • [37] Statistical inference of semidefinite programming
    Alexander Shapiro
    Mathematical Programming, 2019, 174 : 77 - 97
  • [38] A self-concordance property for nonconvex semidefinite programming
    Rodrigo Garcés
    Walter Gómez
    Florian Jarre
    Mathematical Methods of Operations Research, 2011, 74 : 77 - 92
  • [39] A self-concordance property for nonconvex semidefinite programming
    Garces, Rodrigo
    Gomez, Walter
    Jarre, Florian
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2011, 74 (01) : 77 - 92
  • [40] A Semidefinite Programming approach for solving Multiobjective Linear Programming
    Victor Blanco
    Justo Puerto
    Safae El Haj Ben Ali
    Journal of Global Optimization, 2014, 58 : 465 - 480