The volumetric barrier for semidefinite programming

被引:15
作者
Anstreicher, KM [1 ]
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
关键词
volumetric barrier; semidefinite programming; self-concordance;
D O I
10.1287/moor.25.3.365.12212
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the volumetric barrier for semidefinite programming, or "generalized" volumetric barrier, as introduced by Nesterov and Nemirovskii. We extend several fundamental properties of the Volumetric barrier for a polyhedral set to the semidefinite case. Our analysis facilitates a simplified proof of self-concordance for the semidefinite volumetric barrier, as well as for the combined volumetric-logarithmic barrier for semidefinite programming. For both of these barriers we obtain self-concordance parameters equal to those previously shown to hold in the polyhedral case.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [21] Semidefinite programming in combinatorial optimization
    Goemans, MX
    MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) : 143 - 161
  • [22] Bounds for codes by semidefinite programming
    O. R. Musin
    Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 134 - 149
  • [23] A robust algorithm for semidefinite programming
    Doan, Xuan Vinh
    Kruk, Serge
    Wolkowicz, Henry
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5) : 667 - 693
  • [24] Semidefinite programming in combinatorial optimization
    Michel X. Goemans
    Mathematical Programming, 1997, 79 : 143 - 161
  • [25] Critical Multipliers in Semidefinite Programming
    Zhang, Tianyu
    Zhang, Liwei
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (04)
  • [26] Uncertainty Propagation with Semidefinite Programming
    Choi, Hyungjin
    Seiler, Peter J.
    Dhople, Sairaj V.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 5966 - 5971
  • [27] An ∈-sensitivity analysis for semidefinite programming
    Lim, S
    Lee, S
    Park, S
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 164 (02) : 417 - 422
  • [28] Symmetricity of the solution of semidefinite programming
    Y. Kanno
    M. Ohsaki
    N. Katoh
    Structural and Multidisciplinary Optimization, 2002, 24 (3) : 225 - 232
  • [29] Statistical inference of semidefinite programming
    Shapiro, Alexander
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 77 - 97
  • [30] Semidefinite programming for permutation codes
    Bogaerts, Mathieu
    Dukes, Peter
    DISCRETE MATHEMATICS, 2014, 326 : 34 - 43