BOUNDS ON SHORT CHARACTER SUMS AND L-FUNCTIONS WITH CHARACTERS TO A POWERFUL MODULUS
被引:6
作者:
Banks, William D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Math, Columbia, MO 65211 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
Banks, William D.
[1
]
Shparlinski, Igor E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, AustraliaUniv Missouri, Dept Math, Columbia, MO 65211 USA
Shparlinski, Igor E.
[2
]
机构:
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
来源:
JOURNAL D ANALYSE MATHEMATIQUE
|
2019年
/
139卷
/
01期
关键词:
MEAN-VALUE THEOREM;
PRIMES;
D O I:
10.1007/s11854-019-0060-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We combine a classical idea of Postnikov (1956) with the method of Korobov (1974) for estimating double Weyl sums, deriving new bounds on short character sums when the modulus q has a small core Pi(p vertical bar q) p. Using this estimate, we improve certain bounds of Gallagher (1972) and Iwaniec (1974) for the corresponding L-functions. In turn, this allows us to improve the error term in the asymptotic formula for primes in short arithmetic progressions modulo a power of a fixed prime. As yet another application of our bounds, we substantially extend the classical zero-free region (which might include Siegel zeros). Finally, we improve the previous best value L = 12/5 = 2.2 of the Linnik constant for primes in arithmetic progressions modulo powers of a fixed prime to L < 2.1115.