Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0

被引:59
|
作者
Mawardi, Bahri [1 ]
Hitzer, Eckhard M. S. [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
关键词
vector derivative; multivector-valued function; Clifford (geometric) algebra; Clifford Fourier transform; uncertainty principle;
D O I
10.1007/s00006-006-0003-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, the basic concept of the vector derivative in geometric algebra is introduced. Second, beginning with the Fourier transform on a scalar function we generalize to a real Fourier transform on Clifford multivector-valued functions (f : R-3 -> Cl-3,Cl-0). Third, we show a set of important properties of the Clifford Fourier transform on Cl-3,Cl-0 such as differentiation properties, and the Plancherel theorem. Finally, we apply the Clifford Fourier transform properties for proving an uncertainty principle for Cl-3,Cl-0 multivector functions.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 50 条
  • [31] Clifford algebra and the Lorentz transformation with (p, q) form
    Shuna Z.
    Advances in Applied Clifford Algebras, 2005, 15 (2) : 233 - 238
  • [32] A Study of LFT Embeddings in the Second Order Clifford Algebra Cl(R2,0)
    Amouzouvi, Kossi
    Vahdati, Sahar
    Song, Bowen
    Bainson, Bernard O.
    Nishat, Nur A. Zarin
    Lehmann, Jens
    IEEE ACCESS, 2024, 12 : 187741 - 187755
  • [33] Clifford Algebra, Lorentz Transformation and Unified Field Theory
    Gu, Ying-Qiu
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (02)
  • [34] Uncertainty principles of the fractional Clifford-Fourier transform
    Shi, Haipan
    Gao, Long
    Xie, Yonghong
    Qiao, Yuying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) : 16105 - 16125
  • [35] Clifford algebra and the four-dimensional Lorentz transformation
    Yu Xueqian
    Huang Qiunan
    Yu Xuegang
    Advances in Applied Clifford Algebras, 2002, 12 (1) : 13 - 19
  • [36] Coordinate Transformation In Unmanned Systems Using Clifford Algebra
    Nasry, Hany
    PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND ROBOTICS ENGINEERING (ICMRE 2019), 2019, : 167 - 170
  • [37] Clifford algebra approach to pointwise convergence of Fourier series on spheres
    Fei Minggang
    Qian Tao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1553 - 1575
  • [39] Representation of Crystallographic Subperiodic Groups in Clifford's Geometric Algebra
    Hitzer, Eckhard
    Ichikawa, Daisuke
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (04) : 887 - 906
  • [40] Hecke algebra representations within Clifford geometric algebras of multivectors
    Fauser, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (10): : 1919 - 1936