Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0

被引:60
作者
Mawardi, Bahri [1 ]
Hitzer, Eckhard M. S. [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
关键词
vector derivative; multivector-valued function; Clifford (geometric) algebra; Clifford Fourier transform; uncertainty principle;
D O I
10.1007/s00006-006-0003-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, the basic concept of the vector derivative in geometric algebra is introduced. Second, beginning with the Fourier transform on a scalar function we generalize to a real Fourier transform on Clifford multivector-valued functions (f : R-3 -> Cl-3,Cl-0). Third, we show a set of important properties of the Clifford Fourier transform on Cl-3,Cl-0 such as differentiation properties, and the Plancherel theorem. Finally, we apply the Clifford Fourier transform properties for proving an uncertainty principle for Cl-3,Cl-0 multivector functions.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 13 条
[1]  
Baylis W. E., 1996, CLIFFORD GEOMETRIC A
[2]  
Bracewell R., 2000, FOURIER TRANSFORM IT
[3]  
Brackx F., 1982, Clifford Analysis
[4]  
BULOW T, 2001, GEOM COMP CLIFF ALG
[5]  
Christensen J.G., 2003, THESIS U COPENHAGEN
[6]  
EBLING J, 2005, IEEE T VISUALIZATION, V11
[7]  
Felsberg M., 2002, THESIS U KIEL GERMAN
[8]  
Hestenes D., 2012, CLIFFORD ALGEBRA GEO
[9]  
HITZER E, 2001, MEM FAC ENG FUKUI U, V49
[10]  
LI C, 1994, REV MATEMATICA IBERO, V10