ON MASS CONCENTRATION FOR THE CRITICAL GENERALIZED KORTEWEG-DE VRIES EQUATION

被引:4
作者
Pigott, B. [1 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
关键词
Korteweg-de Vries (KdV) equation; critical norm; mass concentration; blow-up; NONLINEAR SCHRODINGER-EQUATION; BLOW-UP SOLUTIONS; WELL-POSEDNESS; KDV; DYNAMICS;
D O I
10.1017/S001309151500019X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that blow-up solutions of the critical generalized Korteweg-de Vries equation in H-1(R) concentrate at least the mass of the ground state at the blow-up time. The I-method is used to prove a slightly weaker result in H-s(R) with 16/17 < s < 1. Under an assumption on the precise blow-up rate, we are able to use similar arguments to prove a more precise analogue of the H-1(R) concentration result over the same range of s.
引用
收藏
页码:519 / 532
页数:14
相关论文
共 22 条
  • [1] Bourgain J., 1993, Geom. Funct. Anal., V3, P107
  • [2] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [3] Cazenave T, 2003, Semilinear Schrodinger Equations
  • [4] Colliander J, 2005, MATH RES LETT, V12, P357
  • [5] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749
  • [6] Colliander J., 2001, Electron. J. Differ. Equ, V2001, P1
  • [7] Rough blowup solutions to the L2 critical NLS
    Colliander, James
    Raphael, Pierre
    [J]. MATHEMATISCHE ANNALEN, 2009, 345 (02) : 307 - 366
  • [8] Dodson B., PREPRINT
  • [9] Global rough solutions to the critical generalized KdV equation
    Farah, Luiz Gustavo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (08) : 1968 - 1985
  • [10] Gerard P., 1998, ESAIM CONTR OPTIM CA, V3, P213