Decentralized Trajectory Tracking Control for Soft Robots Interacting With the Environment

被引:49
作者
Angelini, Franco [1 ,2 ,3 ]
Della Santina, Cosimo [1 ,3 ]
Garabini, Manolo [1 ]
Bianchi, Matteo [1 ,3 ]
Gasparri, Gian Maria [1 ]
Grioli, Giorgio [2 ]
Catalano, Manuel Giuseppe [2 ]
Bicchi, Antonio [1 ,2 ,3 ]
机构
[1] Univ Pisa, Ctr Ric Enrico Piaggio, I-56126 Pisa, Italy
[2] Fdn Ist Italiano Tecnol, Soft Robot Human Cooperat & Rehabil, I-16163 Genoa, Italy
[3] Univ Pisa, Dipartimento Ingn Informaz, I-56126 Pisa, Italy
基金
欧盟地平线“2020”;
关键词
Articulated soft robots; iterative learning control (ILC); motion control; ITERATIVE LEARNING CONTROL;
D O I
10.1109/TRO.2018.2830351
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Despite the classic nature of the problem, trajectory tracking for soft robots, i.e., robots with compliant elements deliberately introduced in their design, still presents several challenges. One of these is to design controllers which can obtain sufficiently high performance while preserving the physical characteristics intrinsic to soft robots. Indeed, classic control schemes using high-gain feedback actions fundamentally alter the natural compliance of soft robots effectively stiffening them, thus de facto defeating their main design purpose. As an alternative approach, we consider here using a low-gain feedback, while exploiting feedforward components. In order to cope with the complexity and uncertainty of the dynamics, we adopt a decentralized, iteratively learned feedforward action, combined with a locally optimal feedback control. The relative authority of the feedback and feedforward control actions adapts with the degree of uncertainty of the learned component. The effectiveness of the method is experimentally verified on several robotic structures and working conditions, including unexpected interactions with the environment, where preservation of softness is critical for safety and robustness.
引用
收藏
页码:924 / 935
页数:12
相关论文
共 23 条
[11]   Nonlinear Decamp led Motion-Stiffness Control and Collision Detection/Reaction for the VSA-II Variable Stiffness Device [J].
de Luca, Alessandro ;
Flacco, Fabrizio ;
Bicchi, Antonio ;
Schiavi, Riccardo .
2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, :5487-+
[12]  
Della Santina C, 2017, IEEE ROBOT AUTOM MAG, V24, P75, DOI 10.1109/MRA.2016.2636360
[13]   The Quest for Natural Machine Motion An Open Platform to Fast-Prototype Articulated Soft Robots [J].
Della Santina, Cosimo ;
Piazza, Cristina ;
Gasparri, Gian Maria ;
Bonilla, Manuel ;
Catalano, Manuel ;
Garabini, Manolo ;
Grioli, Giorgio ;
Bicchi, Antonio .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2017, 24 (01) :48-56
[14]   Variable stiffness actuators: The user's point of view [J].
Grioli, Giorgio ;
Wolf, Sebastian ;
Garabini, Manolo ;
Catalano, Manuel ;
Burdet, Etienne ;
Caldwell, Darwin ;
Carloni, Raffaella ;
Friedl, Werner ;
Grebenstein, Markus ;
Laffranchi, Matteo ;
Lefeber, Dirk ;
Stramigioli, Stefano ;
Tsagarakis, Nikos ;
van Damme, Michael ;
Vanderborght, Bram ;
Albu-Schaeffer, Alin ;
Bicchi, Antonio .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (06) :727-743
[16]   Soft robotics: a bioinspired evolution in robotics [J].
Kim, Sangbae ;
Laschi, Cecilia ;
Trimmer, Barry .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (05) :23-30
[17]   Iterative Learning Control With Switching Gain Feedback for Nonlinear Systems [J].
Ouyang, P. R. ;
Petz, B. A. ;
Xi, F. F. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (01)
[18]   Backstepping Control of Variable Stiffness Robots [J].
Petit, Florian ;
Daasch, Andreas ;
Albu-Schaeffer, Alin .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (06) :2195-2202
[19]  
PRATT GA, 1995, IROS '95 - 1995 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS: HUMAN ROBOT INTERACTION AND COOPERATIVE ROBOTS, PROCEEDINGS, VOL 1, P399, DOI 10.1109/IROS.1995.525827
[20]  
Siciliano B., 2016, SPRINGER HDB ROBOTIC