Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations

被引:26
作者
Ezati, Roozbeh [1 ]
Nyamoradi, Nemat [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
psi-Hilfer fractional differential equation; genus theory; Kirchhoff equation; DIFFUSION;
D O I
10.1002/mma.7593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the genus properties in critical point theory, we study the existence and multiplicity of solutions to the following Kirchhoff psi-Hilfer fractional p-Laplacian: {a+b integral(T)(0)vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p)dx)D-H(T)alpha,beta;psi (vertical bar D-H(0+)alpha,beta;psi xi(x)vertical bar(p-2) D-H(0+)alpha,beta;psi xi(x)) -lambda vertical bar xi(x)vertical bar(p-2) xi(x) = g(x,xi(x)), I-0+(beta(beta-1);psi) xi(0) = I-T(beta(beta-1);psi) xi(T), where D-H(0+)alpha,beta;psi xi(x) and D-H(T)alpha,beta;psi are psi-Hilfer fractional derivatives left-sided and right-sided of order 1/p < alpha < 1, a, b > 0 are constants, 0 <= beta <= 1 and I-0+(beta(beta-1);psi) (.) and I-T(beta(beta-1);psi) (.) are psi-Riemann-Liouville fractional integrals left-sided and right-sided, and g :[0.T] x R -> R is a continuous function.
引用
收藏
页码:12909 / 12920
页数:12
相关论文
共 26 条
  • [1] Agrawal OP., 2004, NONLINEAR DYNAM
  • [2] A Caputo fractional derivative of a function with respect to another function
    Almeida, Ricardo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 460 - 481
  • [3] [Anonymous], 1997, Fractals and Fractional Calculus in Continuum Mechanics
  • [4] [Anonymous], 2014, BASIC THEORY FRACTIO
  • [5] Caffarelli LA, 2010, ANN MATH, V171, P1903
  • [6] Existence and uniqueness for a problem involving Hilfer fractional derivative
    Furati, K. M.
    Kassim, M. D.
    Tatar, N. E-
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 1616 - 1626
  • [7] DAMPING DESCRIPTION INVOLVING FRACTIONAL OPERATORS
    GAUL, L
    KLEIN, P
    KEMPLE, S
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1991, 5 (02) : 81 - 88
  • [8] HILFERM R, 2000, APPL FRACTIONAL CALC
  • [9] Kilbas A.A., 2006, North-Holland Mathematics Studies, V204
  • [10] Fractional derivative quantum fields at positive temperature
    Lim, SC
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 363 (02) : 269 - 281