Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain

被引:0
作者
Flores, C. [1 ]
机构
[1] Calif State Univ Channel Isl, One Univ Dr, Camarillo, CA 93012 USA
关键词
Controllability; Stabilization; Linear KdV-like equations; Dispersive equations; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; DE-VRIES EQUATION; BOUNDARY CONTROLLABILITY; SCATTERING TRANSFORM; SOLITARY WAVES; STABILIZATION; STABILIZABILITY; KDV;
D O I
10.1007/s00498-018-0219-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the exact control problem associated to the linearized dispersion-generalized Benjamin-Ono equation which contains fractional-order spatial derivatives on a periodic domain, T. More specifically, we establish that a mass-preserving external force can be applied to the linear system to achieve a final state from a given initial state. The stabilization problem with a linear feedback control is also studied.
引用
收藏
页数:16
相关论文
共 48 条
[1]   UNIQUENESS OF BENJAMIN SOLITARY-WAVE SOLUTION OF THE BENJAMIN-ONO-EQUATION [J].
AMICK, CJ ;
TOLAND, JF .
IMA JOURNAL OF APPLIED MATHEMATICS, 1991, 46 (1-2) :21-28
[2]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[3]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[4]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[5]   On well-posedness for the Benjamin-Ono equation [J].
Burq, Nicolas ;
Planchon, Fabrice .
MATHEMATISCHE ANNALEN, 2008, 340 (03) :497-542
[6]   THE SCATTERING TRANSFORM FOR THE BENJAMIN-ONO-EQUATION [J].
COIFMAN, RR ;
WICKERHAUSER, MV .
INVERSE PROBLEMS, 1990, 6 (05) :825-861
[7]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749
[8]   Stabilization and control for the nonlinear Schrodinger equation on a compact surface [J].
Dehman, B. ;
Gerard, P. ;
Lebeau, G. .
MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (04) :729-749
[9]  
Flores C, 2017, STABILIZATION DISPER
[10]  
FOKAS AS, 1983, STUD APPL MATH, V68, P1