Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials

被引:291
作者
Kim, Myungwoong [1 ]
Safron, Nathaniel S. [1 ]
Han, Eungnak [1 ]
Arnold, Michael S. [1 ]
Gopalan, Padma [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Graphene; graphite; band gap; mobility gap; transistor; field effect; block copolymer; soft; lithography; nanopatterning; nanoperforaced; honeycomb; anti-dot; large area; nanomaterials; BLOCK-COPOLYMERS; LITHOGRAPHY; ORIENTATION;
D O I
10.1021/nl9032318
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the fabrication of nanoperforated graphene materials with sub-20-nm features using cylinder-forming diblock copolymer templates across > 1 mm(2) areas. Hexagonal arrays of holes are etched into graphene membranes, and the remaining constrictions between holes interconnect forming a honeycomb structure. Quantum confinement. disorder, and localization effects modulate the electronic structure, opening an effective energy gap of 100 rneV in the nanopatterned material. The field-effect conductivity can be modulated by 40x (200x) at room temperature (T = 105 K) as a result, A room temperature hole mobility of 1 cm(2) V-1 s(-1) was measured in the fabricated nanoperforated graphene held effect transistors. This scalable strategy for modulating the electronic structure of graphene is expected to facilitate applications of graphene in electronics, optoelectronics, and sensing.
引用
收藏
页码:1125 / 1131
页数:7
相关论文
共 29 条
[21]   Chaotic dirac billiard in graphene quantum dots [J].
Ponomarenko, L. A. ;
Schedin, F. ;
Katsnelson, M. I. ;
Yang, R. ;
Hill, E. W. ;
Novoselov, K. S. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5874) :356-358
[22]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[23]   Magnetoconductance oscillations in graphene antidot arrays [J].
Shen, T. ;
Wu, Y. Q. ;
Capano, M. A. ;
Rokhinson, L. P. ;
Engel, L. W. ;
Ye, P. D. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[24]   Coulomb blockade in graphene nanoribbons [J].
Sols, F. ;
Guinea, F. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[25]   Energy Gaps in Etched Graphene Nanoribbons [J].
Stampfer, C. ;
Guettinger, J. ;
Hellmueller, S. ;
Molitor, F. ;
Ensslin, K. ;
Ihn, T. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[26]   Block copolymers and conventional lithography [J].
Stoykovich, Mark P. ;
Nealey, Paul F. .
MATERIALS TODAY, 2006, 9 (09) :20-29
[27]   Character of electronic states in graphene antidot lattices: Flat bands and spatial localization [J].
Vanevic, Mihajlo ;
Stojanovic, Vladimir M. ;
Kindermann, Markus .
PHYSICAL REVIEW B, 2009, 80 (04)
[28]   Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors [J].
Wang, Xinran ;
Ouyang, Yijian ;
Li, Xiaolin ;
Wang, Hailiang ;
Guo, Jing ;
Dai, Hongjie .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[29]   Quasiparticle energies and band gaps in graphene nanoribbons [J].
Yang, Li ;
Park, Cheol-Hwan ;
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)