Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials

被引:291
作者
Kim, Myungwoong [1 ]
Safron, Nathaniel S. [1 ]
Han, Eungnak [1 ]
Arnold, Michael S. [1 ]
Gopalan, Padma [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Graphene; graphite; band gap; mobility gap; transistor; field effect; block copolymer; soft; lithography; nanopatterning; nanoperforaced; honeycomb; anti-dot; large area; nanomaterials; BLOCK-COPOLYMERS; LITHOGRAPHY; ORIENTATION;
D O I
10.1021/nl9032318
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the fabrication of nanoperforated graphene materials with sub-20-nm features using cylinder-forming diblock copolymer templates across > 1 mm(2) areas. Hexagonal arrays of holes are etched into graphene membranes, and the remaining constrictions between holes interconnect forming a honeycomb structure. Quantum confinement. disorder, and localization effects modulate the electronic structure, opening an effective energy gap of 100 rneV in the nanopatterned material. The field-effect conductivity can be modulated by 40x (200x) at room temperature (T = 105 K) as a result, A room temperature hole mobility of 1 cm(2) V-1 s(-1) was measured in the fabricated nanoperforated graphene held effect transistors. This scalable strategy for modulating the electronic structure of graphene is expected to facilitate applications of graphene in electronics, optoelectronics, and sensing.
引用
收藏
页码:1125 / 1131
页数:7
相关论文
共 29 条
  • [1] Making graphene visible
    Blake, P.
    Hill, E. W.
    Castro Neto, A. H.
    Novoselov, K. S.
    Jiang, D.
    Yang, R.
    Booth, T. J.
    Geim, A. K.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [2] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [3] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [4] MAGNETOTRANSPORT THROUGH AN ANTIDOT LATTICE IN GAAS-ALXGA1-XAS HETEROSTRUCTURES
    ENSSLIN, K
    PETROFF, PM
    [J]. PHYSICAL REVIEW B, 1990, 41 (17): : 12307 - 12310
  • [5] EROMS J, ARXIV09010840
  • [6] Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
    Ferrari, Andrea C.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 47 - 57
  • [7] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [8] Photopatternable imaging layers for controlling block copolymer microdomain orientation
    Han, Eungnak
    In, Insik
    Park, Sang-Min
    La, Young-Hye
    Wang, Yao
    Nealey, Paul F.
    Gopalan, Padma
    [J]. ADVANCED MATERIALS, 2007, 19 (24) : 4448 - +
  • [9] Effect of Composition of Substrate-Modifying Random Copolymers on the Orientation of Symmetric and Asymmetric Diblock Copolymer Domains
    Han, Eungnak
    Stuen, Karl O.
    La, Young-Hye
    Nealey, Paul F.
    Gopalan, Padma
    [J]. MACROMOLECULES, 2008, 41 (23) : 9090 - 9097
  • [10] Energy band-gap engineering of graphene nanoribbons
    Han, Melinda Y.
    Oezyilmaz, Barbaros
    Zhang, Yuanbo
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)