Continuous-time orbit problems are decidable in polynomial-time

被引:5
作者
Chen, Taolue [1 ]
Yu, Nengkun [3 ,4 ]
Han, Tingting [2 ]
机构
[1] Middlesex Univ, Dept Comp Sci, London N17 8HR, England
[2] Univ London, Dept Comp Sci & Informat Syst, London WC1E 7HU, England
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
Dynamical systems; Differential equation; Computational complexity; Continuous-time orbit problem; Linear algebra;
D O I
10.1016/j.ipl.2014.08.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We place the continuous-time orbit problem in P, sharpening the decidability result shown by Hainry [7]. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 9 条
[1]  
[Anonymous], SODA
[2]  
Arvind V, 2008, LECT NOTES COMPUT SC, V5092, P160
[3]  
Baker A., 1990, Transcendental Number Theory
[4]   The continuous Skolem-Pisot problem [J].
Bell, Paul C. ;
Delvenne, Jean-Charles ;
Jungers, Raphael M. ;
Blondel, Vincent D. .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) :3625-3634
[5]  
Chonev V, 2013, STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, P941
[6]  
Cohen H., 1993, COURSE COMPUTATIONAL
[7]   Reachability in linear dynamical systems [J].
Hainry, Emmanuel .
LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 :241-250
[8]  
Jin-Yi Cai, 1994, International Journal of Foundations of Computer Science, V5, P293, DOI 10.1142/S0129054194000165
[9]   POLYNOMIAL-TIME ALGORITHM FOR THE ORBIT PROBLEM [J].
KANNAN, R ;
LIPTON, RJ .
JOURNAL OF THE ACM, 1986, 33 (04) :808-821