Adaptive region-based compression of multispectral images

被引:0
|
作者
Cagnazzo, M. [1 ]
Gaetano, R. [1 ]
Parrilli, S. [1 ]
Verdoliva, L. [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Ingn Elettron & Telecommun, Via Caludio, I-80125 Naples, Italy
关键词
region-based; object-based; wavelet; multispectral; image compression;
D O I
10.1109/ICIP.2006.312916
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The region-based description of multispectral images enables important high-level tasks such as data mining and retrieval, and region-of-interest selection. In order to obtain an efficient representation of such images we resort to adaptive transform coding techniques. Such techniques, however, require a considerable information overhead, which must be carefully managed to obtain a satisfactory rate-distortion performance. In this work we develop several region-based coding schemes and compare them with conventional (non-adaptive) and class-based schemes, so as to single out the rate-distortion gains/losses of this approach.
引用
收藏
页码:3249 / +
页数:2
相关论文
共 50 条
  • [21] Content-Adaptive Region-Based Color Texture Descriptors for Medical Images
    Riaz, Farhan
    Hassan, Ali
    Nisar, Rida
    Dinis-Ribeiro, Mario
    Coimbra, Miguel Tavares
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (01) : 162 - 171
  • [22] An adaptive, region-based allocator for Java
    School of Computer Science, McGill University, 3480 University Street, Montreal, Que. H3A 2A7, Canada
    1600, 233-244 (February 2003):
  • [23] Adaptive Region-Based Active Learning
    Cortes, Corinna
    DeSalvo, Giulia
    Gentile, Claudio
    Mohri, Mehryar
    Zhang, Ningshan
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [24] Adaptive Region-Based Active Learning
    Cortes, Corinna
    DeSalvo, Giulia
    Gentile, Claudio
    Mohri, Mehryar
    Zhang, Ningshan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [25] Segmented adaptive DPCM for lossy compression of multispectral MR images
    Hu, JH
    Wang, Y
    Cahill, P
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 1997, 8 (01) : 69 - 82
  • [26] Transform based lossy compression of multispectral images
    Kaarna, A
    Parkkinen, J
    PATTERN ANALYSIS AND APPLICATIONS, 2001, 4 (01) : 39 - 50
  • [27] Region-based super-resolution for compression
    Barreto, D.
    Alvarez, L. D.
    Molina, R.
    Katsaggelos, A. K.
    Callico, G. M.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2007, 18 (2-3) : 59 - 81
  • [28] Fractal image compression with region-based functionality
    Belloulata, K
    Konrad, J
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (04) : 351 - 362
  • [29] Region-based wavelet transform for image compression
    Kim, JH
    Lee, JY
    Kang, ES
    Ko, SJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 1998, 45 (08) : 1137 - 1140
  • [30] Region-Based Prediction for Image Compression in the Cloud
    Begaint, Jean
    Thoreau, Dominique
    Guillotel, Philippe
    Guillemot, Christine
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1835 - 1846