High-dimensional empirical likelihood inference

被引:12
作者
Chang, Jinyuan [1 ]
Chen, Song Xi [2 ]
Tang, Cheng Yong [3 ]
Wu, Tong Tong [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China
[2] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[3] Temple Univ, Dept Stat Sci, 1810 Liacouras Walk, Philadelphia, PA 19122 USA
[4] Univ Rochester, Dept Biostat & Computat Biol, 265 Crittenden Blvd, Rochester, NY 14642 USA
基金
中国国家自然科学基金; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Empirical likelihood; General estimating equation; High-dimensional statistical inference; Nuisance parameter; Over-identification;
D O I
10.1093/biomet/asaa051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-dimensional statistical inference with general estimating equations is challenging and remains little explored. We study two problems in the area: confidence set estimation for multiple components of the model parameters, and model specifications tests. First, we propose to construct a new set of estimating equations such that the impact from estimating the high-dimensional nuisance parameters becomes asymptotically negligible. The new construction enables us to estimate a valid confidence region by empirical likelihood ratio. Second, we propose a test statistic as the maximum of the marginal empirical likelihood ratios to quantify data evidence against the model specification. Our theory establishes the validity of the proposed empirical likelihood approaches, accommodating over-identification and exponentially growing data dimensionality. Numerical studies demonstrate promising performance and potential practical benefits of the new methods.
引用
收藏
页码:127 / 147
页数:21
相关论文
共 43 条
[11]   MARGINAL EMPIRICAL LIKELIHOOD AND SURE INDEPENDENCE FEATURE SCREENING [J].
Chang, Jinyuan ;
Tang, Cheng Yong ;
Wu, Yichao .
ANNALS OF STATISTICS, 2013, 41 (04) :2123-2148
[12]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[13]   On the second-order properties of empirical likelihood with moment restrictions [J].
Chen, Song Xi ;
Cui, Hengjian .
JOURNAL OF ECONOMETRICS, 2007, 141 (02) :492-516
[14]   Effects of data dimension on empirical likelihood [J].
Chen, Song Xi ;
Peng, Liang ;
Qin, Ying-Li .
BIOMETRIKA, 2009, 96 (03) :711-722
[15]   On Bartlett correction of empirical likelihood in the presence of nuisance parameters [J].
Chen, SX ;
Cui, HJ .
BIOMETRIKA, 2006, 93 (01) :215-220
[16]   CENTRAL LIMIT THEOREMS AND BOOTSTRAP IN HIGH DIMENSIONS [J].
Chernozhukov, Victor ;
Chetverikov, Denis ;
Kato, Kengo .
ANNALS OF PROBABILITY, 2017, 45 (04) :2309-2352
[17]  
Fan JQ, 2010, STAT SINICA, V20, P101
[18]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[19]   Predictors for Physical Activity in Adolescent Girls Using Statistical Shrinkage Techniques for Hierarchical Longitudinal Mixed Effects Models [J].
Grant, Edward M. ;
Young, Deborah Rohm ;
Wu, Tong Tong .
PLOS ONE, 2015, 10 (04)
[20]   METHODOLOGY AND ALGORITHMS OF EMPIRICAL LIKELIHOOD [J].
HALL, P ;
LASCALA, B .
INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (02) :109-127