High-dimensional empirical likelihood inference

被引:12
作者
Chang, Jinyuan [1 ]
Chen, Song Xi [2 ]
Tang, Cheng Yong [3 ]
Wu, Tong Tong [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China
[2] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[3] Temple Univ, Dept Stat Sci, 1810 Liacouras Walk, Philadelphia, PA 19122 USA
[4] Univ Rochester, Dept Biostat & Computat Biol, 265 Crittenden Blvd, Rochester, NY 14642 USA
基金
中国国家自然科学基金; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Empirical likelihood; General estimating equation; High-dimensional statistical inference; Nuisance parameter; Over-identification;
D O I
10.1093/biomet/asaa051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-dimensional statistical inference with general estimating equations is challenging and remains little explored. We study two problems in the area: confidence set estimation for multiple components of the model parameters, and model specifications tests. First, we propose to construct a new set of estimating equations such that the impact from estimating the high-dimensional nuisance parameters becomes asymptotically negligible. The new construction enables us to estimate a valid confidence region by empirical likelihood ratio. Second, we propose a test statistic as the maximum of the marginal empirical likelihood ratios to quantify data evidence against the model specification. Our theory establishes the validity of the proposed empirical likelihood approaches, accommodating over-identification and exponentially growing data dimensionality. Numerical studies demonstrate promising performance and potential practical benefits of the new methods.
引用
收藏
页码:127 / 147
页数:21
相关论文
共 43 条
[1]   Efficient estimation of models with conditional moment restrictions containing unknown functions [J].
Ai, CR ;
Chen, XH .
ECONOMETRICA, 2003, 71 (06) :1795-1843
[2]   Least squares after model selection in high-dimensional sparse models [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
BERNOULLI, 2013, 19 (02) :521-547
[3]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[4]   TWO-STEP SEMIPARAMETRIC EMPIRICAL LIKELIHOOD INFERENCE [J].
Bravo, Francesco ;
Carlos Escanciano, Juan ;
Van Keilegom, Ingrid .
ANNALS OF STATISTICS, 2020, 48 (01) :1-26
[5]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[6]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[7]   A NEW SCOPE OF PENALIZED EMPIRICAL LIKELIHOOD WITH HIGH-DIMENSIONAL ESTIMATING EQUATIONS [J].
Chang, Jinyuan ;
Tang, Cheng Yong ;
Wu, Tong Tong .
ANNALS OF STATISTICS, 2018, 46 (6B) :3185-3216
[8]   Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity [J].
Chang, Jinyuan ;
Zheng, Chao ;
Zhou, Wen-Xin ;
Zhou, Wen .
BIOMETRICS, 2017, 73 (04) :1300-1310
[9]   LOCAL INDEPENDENCE FEATURE SCREENING FOR NONPARAMETRIC AND SEMIPARAMETRIC MODELS BY MARGINAL EMPIRICAL LIKELIHOOD [J].
Chang, Jinyuan ;
Tang, Cheng Yong ;
Wu, Yichao .
ANNALS OF STATISTICS, 2016, 44 (02) :515-539
[10]   High dimensional generalized empirical likelihood for moment restrictions with dependent data [J].
Chang, Jinyuan ;
Chen, Song Xi ;
Chen, Xiaohong .
JOURNAL OF ECONOMETRICS, 2015, 185 (01) :283-304