Reconsideration of the Type I Error Rate for Psychological Science in the Era of Replication

被引:3
作者
Carlin, Michael T. [1 ]
Costello, Mack S. [1 ]
Flansburg, Madisyn A. [1 ]
Darden, Alyssa [1 ]
机构
[1] Rider Univ, Dept Psychol, 2083 Lawrenceville Rd, Lawrenceville, NJ 08648 USA
关键词
decision making; replication; Type I error; power; new statistics; PHENYLKETONURIA; PREVALENCE; TESTS;
D O I
10.1037/met0000490
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Careful consideration of the tradeoff between Type I and Type II error rates when designing experiments is critical for maximizing statistical decision accuracy. Typically, Type I error rates (e.g., .05) are significantly lower than Type II error rates (e.g., .20 for .80 power) in psychological science. Further, positive findings (true effects and Type I errors) are more likely to be the focus of replication. This conventional approach leads to very high rates of Type II error. Analyses show that increasing the Type I error rate to .10, thereby increasing power and decreasing the Type II error rate for each test, leads to higher overall rates of correct statistical decisions. This increase of Type I error rate is consistent with, and most beneficial in the context of, the replication and "New Statistics" movements in psychology. Translational Abstract Making decisions under conditions of uncertainty (e.g., science) always involves a tradeoff between two types of errors. The decision maker can conclude something is present when it is not (false positive or Type I error) or conclude no difference is present, when in reality there is a difference (a miss or Type II error). We address the need to carefully consider the balance of these error types in scientific decision making. In psychology, it is typical to more stringently control the Type I error rate at .05, while the Type II error rate is .20 (i.e., when power is .80). We demonstrate that the overall percentage correct decisions in psychological science can be increased by increasing the Type I error rate to .10 to increase power, and decrease the Type II error rate. This is particularly relevant given the recent methodological and statistical changes in the field, particularly the long-needed emphasis on replication.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 24 条
[1]   Estimating the reproducibility of psychological science [J].
Aarts, Alexander A. ;
Anderson, Joanna E. ;
Anderson, Christopher J. ;
Attridge, Peter R. ;
Attwood, Angela ;
Axt, Jordan ;
Babel, Molly ;
Bahnik, Stepan ;
Baranski, Erica ;
Barnett-Cowan, Michael ;
Bartmess, Elizabeth ;
Beer, Jennifer ;
Bell, Raoul ;
Bentley, Heather ;
Beyan, Leah ;
Binion, Grace ;
Borsboom, Denny ;
Bosch, Annick ;
Bosco, Frank A. ;
Bowman, Sara D. ;
Brandt, Mark J. ;
Braswell, Erin ;
Brohmer, Hilmar ;
Brown, Benjamin T. ;
Brown, Kristina ;
Bruening, Jovita ;
Calhoun-Sauls, Ann ;
Callahan, Shannon P. ;
Chagnon, Elizabeth ;
Chandler, Jesse ;
Chartier, Christopher R. ;
Cheung, Felix ;
Christopherson, Cody D. ;
Cillessen, Linda ;
Clay, Russ ;
Cleary, Hayley ;
Cloud, Mark D. ;
Cohn, Michael ;
Cohoon, Johanna ;
Columbus, Simon ;
Cordes, Andreas ;
Costantini, Giulio ;
Alvarez, Leslie D. Cramblet ;
Cremata, Ed ;
Crusius, Jan ;
DeCoster, Jamie ;
DeGaetano, Michelle A. ;
Della Penna, Nicolas ;
den Bezemer, Bobby ;
Deserno, Marie K. .
SCIENCE, 2015, 349 (6251)
[2]   Phenylketonuria: a review of current and future treatments [J].
Al Hafid, Naz ;
Christodoulou, John .
TRANSLATIONAL PEDIATRICS, 2015, 4 (04) :304-317
[3]   Evidence-based practice in psychology [J].
Goodheart C.D. ;
Levant R.F. ;
Barlow D.H. ;
Carter J. ;
Davidson K.W. ;
Hagglund K.J. ;
Hollon S.D. ;
Johnson J.D. ;
Leviton L.C. ;
Mahrer A.R. ;
Newman F.L. ;
Norcross J.C. ;
Silverman D.K. ;
Smedley B.D. ;
Wampold B.E. ;
Westen D.I. ;
Yates B.T. ;
Zane N.W. ;
Reed G.M. ;
Bufka L.F. ;
Nelson P.D. ;
Belar C.D. ;
Bullock M. .
AMERICAN PSYCHOLOGIST, 2006, 61 (04) :271-285
[4]   The New Statistics: Why and How [J].
Cumming, Geoff .
PSYCHOLOGICAL SCIENCE, 2014, 25 (01) :7-29
[5]   The Long Way From α-Error Control to Validity Proper: Problems With a Short-Sighted False-Positive Debate [J].
Fiedler, Klaus ;
Kutzner, Florian ;
Krueger, Joachim I. .
PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2012, 7 (06) :661-669
[6]   p-Hacking and Publication Bias Interact to Distort Meta-Analytic Effect Size Estimates [J].
Friese, Malte ;
Frankenbach, Julius .
PSYCHOLOGICAL METHODS, 2020, 25 (04) :456-471
[7]   Small Effects: The Indispensable Foundation for a Cumulative Psychological Science [J].
Goetz, Friedrich M. ;
Gosling, Samuel D. ;
Rentfrow, Peter J. .
PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2022, 17 (01) :205-215
[8]   The Extent and Consequences of P-Hacking in Science [J].
Head, Megan L. ;
Holman, Luke ;
Lanfear, Rob ;
Kahn, Andrew T. ;
Jennions, Michael D. .
PLOS BIOLOGY, 2015, 13 (03)
[9]   Probability as certainty:: Dichotomous thinking and the misuse of p values [J].
Hoekstra, Rink ;
Finch, Sue ;
Kiers, Henk A. L. ;
Johnson, Addie .
PSYCHONOMIC BULLETIN & REVIEW, 2006, 13 (06) :1033-1037
[10]   Why most published research findings are false [J].
Ioannidis, JPA .
PLOS MEDICINE, 2005, 2 (08) :696-701