H2-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation

被引:13
作者
Anguiano, M. [1 ]
Caraballo, T. [1 ]
Real, J. [1 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
Reaction-diffusion equations; Non-autonomous (pullback) attractors; Invariant sets; H-2-regularity;
D O I
10.1016/j.na.2009.07.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some regularity results for the pullback attractor of a reaction-diffusion model. First we establish a general result about H-2-boundedness of invariant sets for an evolution process. Then, as a consequence, we deduce that the pullback attractor of a non-autonomous reaction-diffusion equation is bounded not only in L-2 (Omega) boolean AND H-0(1) (Omega) but also in H-2 (Omega). (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:876 / 880
页数:5
相关论文
共 8 条
[1]  
[Anonymous], 2001, CAM T APP M
[2]   Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :263-268
[3]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[4]  
Kloeden P.E., 2003, STOCH DYNAM, V3, P101, DOI 10.1142/S0219493703000632
[5]   Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations [J].
Li, Yongjun ;
Zhong, Chengkui .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) :1020-1029
[6]   Pullback attractors of nonautonomous reaction-diffusion equations [J].
Song, Haitao ;
Wu, Hongqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) :1200-1215
[7]   Odour-active compounds of Jinhua ham [J].
Song, Huanlu ;
Cadwallader, Keith R. ;
Singh, Tanoj K. .
FLAVOUR AND FRAGRANCE JOURNAL, 2008, 23 (01) :1-6
[8]  
TERNAM R, 1997, INFINITE DIMENSIONAL