Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm

被引:199
作者
Xu, Shuhui
Wang, Yong [1 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar module; Flower pollination algorithm; Nelder-Mead simplex method; Generalized opposition-based learning; Parameter estimation; PARTICLE SWARM OPTIMIZATION; SOLAR-CELLS; MODEL PARAMETERS; DIFFERENTIAL EVOLUTION; SIMPLEX SEARCH; IDENTIFICATION; EXTRACTION; PERFORMANCE; SINGLE;
D O I
10.1016/j.enconman.2017.04.042
中图分类号
O414.1 [热力学];
学科分类号
摘要
Building highly accurate model for solar cells and photovoltaic (PV) modules based on experimental data is vital for the simulation, evaluation, control, and optimization of PV systems. Powerful optimization algorithms are necessary to accomplish this task. In this study, a new optimization algorithm is proposed for efficiently and accurately estimating the parameters of solar cells and PV modules. The proposed algorithm is developed based on the flower pollination algorithm by incorporating it with the Nelder-Mead simplex method and the generalized opposition-based learning mechanism. The proposed algorithm has a simple structure thus is easy to implement. The experimental results tested on three different solar cell models including the single diode model, the double diode model, and a PV module clearly demonstrate the effectiveness of this algorithm. The comparisons with some other published methods demonstrate that the proposed algorithm is superior than most reported algorithms in terms of the accuracy of final solutions, convergence speed, and stability. Furthermore, the tests on three PV modules of different types (Multi-crystalline, Thin-film, and Mono-crystalline) suggest that the proposed algorithm can give superior results at different irradiance and temperature. The proposed algorithm can serve as a new alternative for parameter estimation of solar cells/PV modules. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 64 条
[1]   Opposition-based learning in the shuffled differential evolution algorithm [J].
Ahandani, Morteza Alinia ;
Alavi-Rad, Hosein .
SOFT COMPUTING, 2012, 16 (08) :1303-1337
[2]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[3]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[4]   Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm [J].
Allam, Dalia ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 123 :535-548
[5]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[6]  
[Anonymous], 2007, P 4 IEEE INT C COMP
[7]  
[Anonymous], 2010, PROC INT JOINT C NEU, DOI [DOI 10.1109/IJCNN.2010.5596906, DOI 10.1109/IJCNN.2010.5596906.VOLUME10,2022128821]
[8]   Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :608-614
[9]   Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2013, 90 :123-133
[10]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949