Erosion Regularities of Gas Pipelines Based On the Gas-Solid Two-Way Coupling Method

被引:0
|
作者
Peng, Wenshan [1 ]
Cao, Xuewen [1 ]
Xu, Kun [1 ]
Li, Jinjuan [1 ]
Fan, Yin [1 ]
机构
[1] China Univ Petr, Coll Pipeline & Civil Engn, Qingdao 266580, Peoples R China
来源
2016 INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING | 2017年 / 1794卷
关键词
PARTICLE EROSION; ELBOWS;
D O I
10.1063/1.4971915
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In order to study the erosion regularities of pipelines with gas-solid flow and to predict the location where the maximum erosion occurs, the Eulerian-Lagrangian method was employed to calculate the gas-solid flow inner the pipeline. The gas phase flow field was calculated under the Eulerian coordinate system and the trajectory of particles were calculated under the Lagrangian coordinate system. The DNV erosion model and Forder et al. particle-wall collision model were used to calculate the erosion rate of the pipe wall. The two-way coupling method was taken into consideration in the process of numerical calculation. Multiple models are combined to study the erosion rate and the maximum erosion location of elbows under the conditions of five parameters which exert the most serious effect on erosion, including pipe diameter, particle diameter, inlet velocity, etc. The results show that: (1) the maximum erosion location of the pipe bend is sensitive with the change of the bend orientation, pipe diameter and inlet velocity; (2) the critical diameter of solid particle is proposed and the erosion regularities differ significantly before and after the critical diameter.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Solid particle erosion in gradual contraction geometry for a gas-solid system
    Darihaki, Farzin
    Zhang, Jun
    Shirazi, Siamack A.
    WEAR, 2019, 426 : 643 - 651
  • [2] Gas-solid Erosion on Bionic Configuration Surface
    Han Zhiwu
    Zhang Junqiu
    Ge Chao
    Jiang Jialian
    Ren Luquan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (02): : 306 - 311
  • [3] Gas-Solid Erosion Study of Elbow Pipe based on Erosion Dynamic Grid Technology
    Zhu, D. S.
    Li, Q. Q.
    Ou, G. F.
    Luo, M. H.
    Gu, Y. J.
    JOURNAL OF APPLIED FLUID MECHANICS, 2022, 15 (06) : 1837 - 1850
  • [4] Numerical Simulation of Gas-Solid Two-Phase Erosion for Elbow and Tee Pipe in Gas Field
    Hong, Bingyuan
    Li, Yanbo
    Li, Xiaoping
    Ji, Shuaipeng
    Yu, Yafeng
    Fan, Di
    Qian, Yating
    Guo, Jian
    Gong, Jing
    ENERGIES, 2021, 14 (20)
  • [5] The effect of vibration on the erosion of elbows in gas-solid two-phase flow
    Guo, Zihan
    Fan, Jianchun
    Zhang, Jun
    Yang, Yunpeng
    POWDER TECHNOLOGY, 2025, 452
  • [6] A general numerical method for solid particle erosion in gas-liquid two-phase flow pipelines
    Zhang, Ri
    Xu, Kai
    Liu, Yong
    Liu, Haixiao
    OCEAN ENGINEERING, 2023, 267
  • [7] Numerical Simulation of Elbow Erosion in Shale Gas Fields under Gas-Solid Two-Phase Flow
    Hong, Bingyuan
    Li, Xiaoping
    Li, Yanbo
    Li, Yu
    Yu, Yafeng
    Wang, Yumo
    Gong, Jing
    Ai, Dihui
    ENERGIES, 2021, 14 (13)
  • [8] Numerical study of gas-solid two-phase flow and erosion in a cavity with a slope
    Lin, Zhe
    Sun, Xiwang
    Li, Yi
    Zhu, Zuchao
    PARTICUOLOGY, 2022, 62 : 25 - 35
  • [9] Gas-solid Erosion Wear Characteristics of Two-phase Flow Tee Pipe
    Hu, Jin
    Zhang, Hao
    Zhang, Jie
    Niu, Shiwei
    Cai, Wenbo
    MECHANIKA, 2021, 27 (03): : 193 - 200
  • [10] A semi-empirical model for CO2 erosion-corrosion of carbon steel pipelines in wet gas-solid flow
    Zhao, Lei
    Yan, Yifei
    Yan, Xiangzhen
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 196