Maps on a quantum logic

被引:9
作者
Nanasiova, Olga [1 ]
Valaskova, Lubica [1 ]
机构
[1] Slovak Tech Univ Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava 81368, Slovakia
关键词
An orthomodular lattice; Compatibility; Orthogonality; Maps on an orthomodular lattice; ALGEBRAS; STATES;
D O I
10.1007/s00500-009-0483-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we will study functions G of two variables on a quantum logic L, such that for each compatible elements a, b is an element of L, G(a, b) = m(a boolean AND b) or G(a, b) = m(a boolean OR b) or G(a; b) = m(a Delta b), where m is a state on L.
引用
收藏
页码:1047 / 1052
页数:6
相关论文
共 16 条
[1]   Separating classical and quantum correlations [J].
Beltrametti, EG ;
Bugajski, S .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (7-8) :1793-1801
[2]  
BOHDALOVA M, 2006, FORUM STAT SLOV, V3, P31
[3]   Ideals and filters in D-posets [J].
Chovanec, F ;
Rybarikova, E .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (01) :17-22
[4]  
CHOVANEC F, 2007, HDB QUANTUM LOGIC QU, P367
[5]   Markov property in quantum logic: A reflection [J].
Dohnal, Gejza .
INFORMATION SCIENCES, 2009, 179 (05) :485-491
[6]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[7]  
Greechie R. J., 1971, J COMBINATORIAL THEO, V10, P119, DOI [10.1016/0097-3165(71)90015-X, DOI 10.1016/0097-3165(71)90015-X]
[8]  
Kalina M, 2006, KYBERNETIKA, V42, P129
[9]  
Kolmogorov Andrey N, 1950, Foundations of the theory of probability
[10]   Map for simultaneous measurements for a quantum logic [J].
Nánásiová, O .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (09) :1889-1903