Preconditioned conjugate gradient algorithms for nonconvex problems

被引:2
作者
Pytlak, R [1 ]
Tarnawski, T [1 ]
机构
[1] Mil Univ Technol, Fac Cybernet, PL-00908 Warsaw, Poland
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.4608810
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper describes a new conjugate gradient algorithm for large scale nonconvex problems. In order to speed up the convergence the algorithm employs a scaling matrix which transforms the space of original variables into the space in which Hessian matrices of functionals describing the problems have more clustered eigenvalues. This is done efficiently by applying limited memory BFGS updating matrices. Once the scaling matrix is calculated, the next few iterations of the conjugate gradient algorithms are performed in the transformed space. We believe that the preconditioned conjugate gradient algorithm gives more flexibility in achieving balance between the computing time and the number of function evaluations in comparison to a limited memory BFGS algorithm. We give some numerical results which supports our claim.
引用
收藏
页码:3191 / 3196
页数:6
相关论文
共 33 条
[1]   DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH [J].
ALBAALI, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :121-124
[2]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[3]   OPTIMIZATION OF UPPER SEMIDIFFERENTIABLE FUNCTIONS [J].
BIHAIN, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 44 (04) :545-568
[4]  
BONGARTZ I, 1994, CUTE CONSTRAINED UNC
[5]   QN-LIKE VARIABLE STORAGE CONJUGATE GRADIENTS [J].
BUCKLEY, A ;
LENIR, A .
MATHEMATICAL PROGRAMMING, 1983, 27 (02) :155-175
[6]  
BYRD R, 1996, REPRESENTATIONS QUAS
[7]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[8]   Global convergence of the method of shortest residuals [J].
Dai, Y ;
Yuan, Y .
NUMERISCHE MATHEMATIK, 1999, 83 (04) :581-598
[9]   Convergence properties of the Fletcher-Reeves method [J].
Dai, YH ;
Yuan, Y .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :155-164
[10]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182