Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system

被引:29
作者
Quezada-Garcia, Sergio [1 ]
Sanchez-Mora, Heriberto [1 ]
Polo-Labarrios, Marco A. [2 ]
Cazares-Ramirez, Ricardo I. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Av Univ 3000,Ciudad Univ, Coyoacan 04510, Mexico
[2] Univ Autonoma Metropolitana Cuajimalpa, Av Vasco Quiroga 4871, Santa Fe Cuajimalpa 05348, Cuajimalpa De M, Mexico
[3] Univ Autonoma Metropolitana Iztapalapa, Av San Rafael Atlixco 186,Leyes Reforma 1ra Secc, Iztapalapa 09340, Mexico
关键词
Solar energy; Parabolic solar trough collector; Nanofluids; Heat transfer in steady state; Reduce order mathematical model; HEAT-TRANSFER; PERFORMANCE ANALYSIS; EXERGY ANALYSIS; NANOFLUIDS; STORAGE; POWER; CFD; OPTIMIZATION; TECHNOLOGIES;
D O I
10.1016/j.csite.2019.100523
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python software, in additional OpenGL is used to generate a schematic visualization of the system. Next, results are validated with data from two different heat-carrier fluids published in the literature, obtaining a maximum relative error less than 10%. The model is used to determine the thermal efficiency using water, thermal oil and nanofluids as heat-carrier fluids. Results show that the thermal efficiency of the parabolic trough collector is higher with nanofluids containing a higher volume fraction of nanoparticles: with a volume fraction of 0.04 and 0.02, the thermal efficiency is of 80% and 79%, respectively. The thermal oil has the lowest efficiency with a maximum efficiency of 76%. The nanofluids allow working at low-pressure levels in the parabolic trough collector compared to pressurized water.
引用
收藏
页数:13
相关论文
共 57 条
  • [1] Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates
    Agrouaz, Y.
    Bouhal, T.
    Allouhi, A.
    Kousksou, T.
    Jamil, A.
    Zeraouli, Y.
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2017, 9 : 28 - 39
  • [2] Algirdas Z, 1972, Adv. Heat Tran., V8, P93
  • [3] Experimental photothermal performance of nanofluids under concentrated solar flux
    Amjad, Muhammad
    Jin, Haichuan
    Du, Xiaoze
    Wen, Dongsheng
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 255 - 262
  • [4] Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries
    Armeanu, Daniel Stefan
    Vintila, Georgeta
    Gherghina, Stefan Cristian
    [J]. ENERGIES, 2017, 10 (03):
  • [5] Experimental study of a designed solar parabolic trough with large rim angle
    Azzouzi, Djelloul
    Bourorga, Houssam Eddine
    Belainine, Khathir Abdelrahim
    Boumeddane, Boussad
    [J]. RENEWABLE ENERGY, 2018, 125 : 495 - 500
  • [6] Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube
    Bellos, E.
    Tzivanidis, C.
    Antonopoulos, K. A.
    Gkinis, G.
    [J]. RENEWABLE ENERGY, 2016, 94 : 213 - 222
  • [7] Alternative designs of parabolic trough solar collectors
    Bellos, Evangelos
    Tzivanidis, Christos
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2019, 71 : 81 - 117
  • [8] The use of nanofluids in solar concentrating technologies: A comprehensive review
    Bellos, Evangelos
    Said, Zafar
    Tzivanidis, Christos
    [J]. JOURNAL OF CLEANER PRODUCTION, 2018, 196 : 84 - 99
  • [9] Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber
    Bellos, Evangelos
    Tzivanidis, Christos
    Papadopoulos, Angelos
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (01) : 237 - 255
  • [10] Bishoyi Deepak, 2017, Resource-Efficient Technologies, V3, P365, DOI 10.1016/j.reffit.2017.02.002