Self-affine multifractal Sierpinski Sponges in Rd

被引:77
作者
Olsen, L [1 ]
机构
[1] Univ St Andrews, St Andrews KY16 9SS, Fife, Scotland
关键词
D O I
10.2140/pjm.1998.183.143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study self-affine multifractals in R-d using the formalism introduced in [Olsen, A multifractal formalism, Advances in Mathematics, 116 (1996), 82-196]. We prove that new multifractal phenomena, not exhibited by self-similar multifractals in R-d, appear in the self-affine case.
引用
收藏
页码:143 / 199
页数:57
相关论文
共 35 条
[1]  
[Anonymous], J THEORETICAL PROBAB, DOI 10.1007/BF02213576
[2]  
ARBEITER M, 1994, RANDOM SELF SIMILAR
[3]  
Bedford T., 1984, THESIS U WARWICK
[4]   MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS [J].
CAWLEY, R ;
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :196-236
[5]   SOME RESULTS ON THE BEHAVIOR AND ESTIMATION OF THE FRACTAL DIMENSIONS OF DISTRIBUTIONS ON ATTRACTORS [J].
CUTLER, CD .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :651-708
[6]  
CUTLER CD, 1992, AI RENDICONTI CI 2 S, P319
[7]  
EDGAR GA, 1992, P LOND MATH SOC, V65, P604
[8]  
EPSIN Y, 1991, CONSTANTIN CARATHEOD, P1108
[9]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[10]   THE DIMENSION OF SELF-AFFINE FRACTALS .2. [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :169-179