Universal arcs in tournaments

被引:1
作者
Bai, Yandong [1 ,2 ]
Li, Binlong [1 ,3 ]
Li, Hao [2 ,4 ]
He, Weihua [2 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
[2] Univ Paris 11, CNRS, Lab Rech Informat, F-91405 Orsay, France
[3] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[4] Jianghan Univ, Inst Interdisciplinary Res, Wuhan 430056, Peoples R China
关键词
Universal arc; Tournament;
D O I
10.1016/j.disc.2016.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An arc uv of a digraph D is called universal if uv and w are in a common cycle for any vertex w of D. We show that every arc of a tournament T is universal if and only if T is either 2-connected or has a cut-vertex v such that the in- and out-neighbors of v both induce strongly connected subtournaments. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2063 / 2065
页数:3
相关论文
共 7 条
[1]  
Adam A., 1999, Acta Cybernetica, V14, P1
[2]  
Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
[3]   THEORY OF ROUND ROBIN TOURNAMENTS [J].
HARARY, F ;
MOSER, L .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (03) :231-&
[4]  
HETYEI G, 2001, ACTA MATH ACAD PAEDA, V17, P47
[5]   On a cyclic connectivity property of directed graphs [J].
Hubenko, Alice .
DISCRETE MATHEMATICS, 2008, 308 (07) :1018-1024
[6]   HAMILTONIAN-CONNECTED TOURNAMENTS [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (02) :142-163
[7]   Every cycle-connected multipartite tournament has a universal arc [J].
Volkmann, Lutz ;
Winzen, Stefan .
DISCRETE MATHEMATICS, 2009, 309 (04) :1013-1017