Crack damage evaluation;
Deep learning;
Computational vision;
Deep convolutional neural network;
Stress intensity factor;
MODEL;
D O I:
10.1016/j.engfracmech.2021.107604
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
This article presents a novel deep learning-based damage evaluation approach by using speckled images. A deep convolutional neural network (DCNN) for predicting the stress intensity factor (SIF) at the crack tip is designed. Based on the proposed DCNN, the SIF can be automatically predicted through computational vision. The data bank consisting of a reference speckled image and lots of deformed speckled images is prepared by a camera and an MTS testing machine. Experiments were performed to verify the method, and the achieved results are quite remarkable with larger than 96% of predicted SIF values falling within 5% of true SIF values when sufficient training images are available. The results also confirm that the appropriate subset size of images within the field of view is 400 ? 400 pixel resolutions.
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Zhang, Yongshan
;
Wu, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Macquarie Univ, Fac Sci & Engn, Dept Comp, Sydney, NSW 2109, AustraliaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Wu, Jia
;
Cai, Zhihua
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Cai, Zhihua
;
Yu, Philip S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
Tsinghua Univ, Inst Data Sci, Beijing 100084, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Zhang, Yongshan
;
Wu, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Macquarie Univ, Fac Sci & Engn, Dept Comp, Sydney, NSW 2109, AustraliaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Wu, Jia
;
Cai, Zhihua
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
Cai, Zhihua
;
Yu, Philip S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
Tsinghua Univ, Inst Data Sci, Beijing 100084, Peoples R ChinaChina Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China