In this paper, we undertake the study of the Tannaka duality construction for the ordinary representations of a proper Lie groupoid on vector bundles. We show that for each proper Lie groupoid G, the canonical homomorphism of g into the reconstructed groupoid T(G) is surjective, although - contrary to what happens in the case of groups - it may fail to be an isomorphism. We obtain necessary and sufficient conditions in order that g may be isomorphic to T(G) and, more generally, in order that T(G) may be a Lie groupoid. We show that if T(G) is a Lie groupoid, the canonical homomorphism G -> T(G) is a submersion and the two groupoids have isomorphic categories of representations. (C) 2010 Elsevier Inc. All rights reserved.
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
Jimenez Morales, Victor Manuel
de Leon, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
de Leon, Manuel
Epstein, Marcelo
论文数: 0引用数: 0
h-index: 0
机构:
Real Acad Ciencias Exactas Fis & Nat, C Valverde 22, Madrid 28004, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Zhang, Tao
Li, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China