Group divisible (K4-e)-packings with any minimum leave

被引:5
|
作者
Gao, Yufeng [1 ,2 ]
Chang, Yanxun [1 ]
Feng, Tao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
[2] Tonghua Normal Univ, Coll Math, Tonghua 134000, Peoples R China
基金
中国国家自然科学基金;
关键词
group divisible packing; (K-4 -e)-packing; leave graph; MAXIMUM PACKINGS; BLOCK SIZE-4; DESIGNS; GRAPHS; COVERINGS; CYCLES; KN;
D O I
10.1002/jcd.21600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A decomposition of Kn(g)\L, the complete n-partite equipartite graph with a subgraph L (called the leave) removed, into edge disjoint copies of a graph G is called a maximum group divisible packing of Kn(g) with G if L contains as few edges as possible. We examine all possible minimum leaves for maximum group divisible (K4-e)-packings. Necessary and sufficient conditions are established for their existences.
引用
收藏
页码:315 / 343
页数:29
相关论文
共 8 条
  • [1] Group Divisible Packings and Coverings with Any Minimum Leave and Minimum Excess
    Hu, Xijuan
    Chang, Yanxun
    Feng, Tao
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1423 - 1446
  • [2] Group Divisible Packings and Coverings with Any Minimum Leave and Minimum Excess
    Xijuan Hu
    Yanxun Chang
    Tao Feng
    Graphs and Combinatorics, 2016, 32 : 1423 - 1446
  • [3] KITE-GROUP DIVISIBLE PACKINGS AND COVERINGS WITH ANY MINIMUM LEAVE AND MINIMUM EXCESS
    Yang, Yuxing
    Chang, Yanxun
    Wang, Lidong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1121 - 1142
  • [4] On the existence of maximum resolvable (K4-e)-packings
    Wang, Lidong
    Su, Renwang
    DISCRETE MATHEMATICS, 2010, 310 (04) : 887 - 896
  • [5] Minimum Resolvable Coverings of Kν with Copies of K4-e
    Su, Renwang
    Wang, Lidong
    GRAPHS AND COMBINATORICS, 2011, 27 (06) : 883 - 896
  • [6] ON SOME MULTICOLOR RAMSEY NUMBERS INVOLVING K3+e AND K4-e
    Shetler, Daniel S.
    Wurtz, Michael A.
    Radziszowski, Stanislaw P.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (03) : 1256 - 1264
  • [7] On the Existence of Resolvable (K 3 + e)-Group Divisible Designs
    Wang, Lidong
    GRAPHS AND COMBINATORICS, 2010, 26 (06) : 879 - 889
  • [8] Minimum Resolvable Coverings of Kv with Copies of K4 − e
    Renwang Su
    Lidong Wang
    Graphs and Combinatorics, 2011, 27 : 883 - 896