Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts

被引:2
作者
Strasser, Peter [1 ,2 ]
Koh, Shirlaine [2 ]
Anniyev, Toyli [3 ,4 ]
Greeley, Jeff [5 ]
More, Karren [6 ]
Yu, Chengfei [2 ]
Liu, Zengcai [2 ]
Kaya, Sarp [3 ,4 ]
Nordlund, Dennis [4 ]
Ogasawara, Hirohito [3 ,4 ]
Toney, Michael F. [3 ,4 ]
Nilsson, Anders [3 ,4 ]
机构
[1] Tech Univ Berlin, Div Chem Engn, Dept Chem, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany
[2] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[4] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[6] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
SURFACE ELECTRONIC-STRUCTURE; OXYGEN REDUCTION REACTION; NANOPARTICLE ELECTROCATALYSTS; BIMETALLIC SURFACES; METAL-SURFACES; PT3CO NANOPARTICLES; REACTIVITY; ADSORPTION; ALLOY; GOLD;
D O I
10.1038/NCHEM.623
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.
引用
收藏
页码:454 / 460
页数:7
相关论文
共 50 条
[31]   Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions [J].
You, Dae Jong ;
Kim, Do Hyung ;
Lile, Jeffrey Roshan De ;
Li, Chengbin ;
Lee, Seung Geol ;
Kim, Ji Man ;
Pak, Chanho .
APPLIED CATALYSIS A-GENERAL, 2018, 562 :250-257
[32]   A Core-Shell Nanoporous Pt-Cu Catalyst with Tunable Composition and High Catalytic Activity [J].
Ge, Xingbo ;
Chen, Luyang ;
Kang, Jianli ;
Fujita, Takeshi ;
Hirata, Akihiko ;
Zhang, Wei ;
Jiang, Jianhua ;
Chen, Mingwei .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (33) :4156-4162
[33]   Core-Shell Structure: The Best Way to Achieve Low-Pt Fuel Cell Electrocatalysts [J].
Liu Bin ;
Liao Shijun ;
Liang Zhenxing .
PROGRESS IN CHEMISTRY, 2011, 23 (05) :852-859
[34]   Recent Development of Pt-Based Core-Shell Structured Electrocatalysts in Fuel Cells [J].
Zhang Haiyan ;
Cao Chunhui ;
Zhao Jian ;
Lin Rui ;
Ma Jianxin .
CHINESE JOURNAL OF CATALYSIS, 2012, 33 (02) :222-229
[35]   SAD-GLAD core-shell nanorod arrays for fuel cell, photodetector, and solar cell electrode applications [J].
Cansizoglu, H. ;
Cansizoglu, M. F. ;
Yurukcu, M. ;
Khudhayer, W. J. ;
Kariuki, N. ;
Myers, D. J. ;
Shaikh, A. U. ;
Karabacak, T. .
NANOEPITAXY: MATERIALS AND DEVICES VI, 2014, 9174
[36]   Investigation of the effects of Pt/Pd composition and PVP content on the activity of Pt/Pd core-shell catalysts [J].
Matsumoto, Katsumasa ;
Hiyoshi, Masataka ;
Iijima, Takashi ;
Noguchi, Hidenori ;
Uosaki, Kohei .
ELECTROCHEMISTRY COMMUNICATIONS, 2020, 115
[37]   AuPt core-shell nanocatalysts with bulk Pt activity [J].
Hartl, Katrin ;
Mayrhofer, Karl J. J. ;
Lopez, Marco ;
Goia, Dan ;
Arenz, Matthias .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) :1487-1489
[38]   Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects [J].
Jia, Qingying ;
Caldwell, Keegan ;
Strickland, Kara ;
Ziegelbauer, Joseph M. ;
Liu, Zhongyi ;
Yu, Zhiqiang ;
Ramaker, David E. ;
Mukerjee, Sanjeev .
ACS CATALYSIS, 2015, 5 (01) :176-186
[39]   A Modified Galvanic Cell Synthesis of Pd@Pt Core-Shell Nanowire Catalysts: Structural Insights and Enhanced ORR Performance [J].
Cao, Weijie ;
Kumar, Mukesh ;
Thakur, Neha ;
Uchiyama, Tomoki ;
Gao, Yunfei ;
Tominaka, Satoshi ;
Machida, Akihiko ;
Watanabe, Toshiki ;
Sato, Ryota ;
Teranishi, Toshiharu ;
Matsumoto, Masashi ;
Imai, Hideto ;
Sakurai, Yoshiharu ;
Uchimoto, Yoshiharu .
ACS APPLIED ENERGY MATERIALS, 2024, 7 (19) :8515-8525
[40]   Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction [J].
Shao, Minhua ;
Smith, Brandon H. ;
Guerrero, Sandra ;
Protsailo, Lesia ;
Su, Dong ;
Kaneko, Keiichi ;
Odell, Jonathan H. ;
Humbert, Michael P. ;
Sasaki, Kotaro ;
Marzullo, Jesse ;
Darling, Robert M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (36) :15078-15090