Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts

被引:2
作者
Strasser, Peter [1 ,2 ]
Koh, Shirlaine [2 ]
Anniyev, Toyli [3 ,4 ]
Greeley, Jeff [5 ]
More, Karren [6 ]
Yu, Chengfei [2 ]
Liu, Zengcai [2 ]
Kaya, Sarp [3 ,4 ]
Nordlund, Dennis [4 ]
Ogasawara, Hirohito [3 ,4 ]
Toney, Michael F. [3 ,4 ]
Nilsson, Anders [3 ,4 ]
机构
[1] Tech Univ Berlin, Div Chem Engn, Dept Chem, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany
[2] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[4] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[6] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
SURFACE ELECTRONIC-STRUCTURE; OXYGEN REDUCTION REACTION; NANOPARTICLE ELECTROCATALYSTS; BIMETALLIC SURFACES; METAL-SURFACES; PT3CO NANOPARTICLES; REACTIVITY; ADSORPTION; ALLOY; GOLD;
D O I
10.1038/NCHEM.623
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.
引用
收藏
页码:454 / 460
页数:7
相关论文
共 50 条
  • [21] Investigating lattice strain impact on the alloyed surface of small Au@PdPt core-shell nanoparticles
    Williams, Benjamin P.
    Yaguchi, Momo
    Lo, Wei-Shang
    Kao, Chen-Rui
    Lamontagne, Leo K.
    Sneed, Brian T.
    Brodsky, Casey N.
    Chou, Lien-Yang
    Kuo, Chun-Hong
    Tsung, Chia-Kuang
    NANOSCALE, 2020, 12 (16) : 8687 - 8692
  • [22] Explainable AI for optimizing oxygen reduction on Pt monolayer core-shell catalysts
    Omidvar, Noushin
    Wang, Shih-Han
    Huang, Yang
    Pillai, Hemanth Somarajan
    Athawale, Andy
    Wang, Siwen
    Achenie, Luke E. K.
    Xin, Hongliang
    ELECTROCHEMICAL SCIENCE ADVANCES, 2024,
  • [23] Activity, Stability, and Degradation Mechanisms of Dealloyed PtCu3 and PtCo3 Nanoparticle Fuel Cell Catalysts
    Hasche, Frederic
    Oezaslan, Mehtap
    Strasser, Peter
    CHEMCATCHEM, 2011, 3 (11) : 1805 - 1813
  • [24] Iridium-decorated Palladium-Platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell
    Wang, Chen-Hao
    Hsu, Hsin-Cheng
    Wang, Kai-Ching
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 427 : 91 - 97
  • [25] Dealloyed ternary Cu@ Pt-Ru core-shell electrocatalysts supported on carbon paper for methanol electrooxidation catalytic activity
    Poochai, Chatwarin
    Veerasai, Waret
    Somsook, Ekasith
    Dangtip, Somsak
    ELECTROCHIMICA ACTA, 2016, 222 : 1243 - 1256
  • [26] Ru-core@Pt-shell nanosheet for fuel cell electrocatalysts with high activity and durability
    Takimoto, Daisuke
    Ohnishi, Tomohiro
    Nutariya, Jeerapat
    Shen, Zhongrong
    Ayato, Yusuke
    Mochizuki, Dai
    Demortiere, Arnaud
    Boulineau, Adrien
    Sugimoto, Wataru
    JOURNAL OF CATALYSIS, 2017, 345 : 207 - 215
  • [27] Dealloyed PtNi-Core-Shell Nanocatalysts Enable Significant Lowering of Pt Electrode Content in Direct Methanol Fuel Cells
    Gluesen, Andreas
    Dionigi, Fabio
    Paciok, Paul
    Heggen, Marc
    Mueller, Martin
    Gan, Lin
    Strasser, Peter
    Dunin-Borkowsk, Rafal E.
    Stolten, Detlef
    ACS CATALYSIS, 2019, 9 (05): : 3764 - 3772
  • [28] Surface Atomic Regulation of Core-Shell Noble Metal Catalysts
    Ge, Jingjie
    Li, Zhijun
    Hong, Xun
    Li, Yadong
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (20) : 5113 - 5127
  • [29] One-step sonochemical syntheses of Ni@Pt core-shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst
    Lee, Eunjik
    Jang, Ji-Hoon
    Matin, Md. Abdul
    Kwon, Young-Uk
    ULTRASONICS SONOCHEMISTRY, 2014, 21 (01) : 317 - 323
  • [30] Core-shell PdAu nanocluster catalysts to suppress sulfur poisoning
    Gao, Shan
    Wang, Linxia
    Li, Hui
    Liu, Zunfeng
    Shi, Guoliang
    Peng, Jianfei
    Wang, Bin
    Wang, Weichao
    Cho, Kyeongjae
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (28) : 15010 - 15019