Harmonic and subharmonic solutions of the SD oscillator

被引:25
作者
Chen, Hebai [1 ]
Xie, Jianhua [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic solution; Subharmonic solution; SD oscillator; PERIODIC-SOLUTIONS; DUFFING EQUATIONS; EXISTENCE; DYNAMICS; SYSTEMS; POINT;
D O I
10.1007/s11071-016-2659-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper we study the existence and uniqueness of harmonic solutions and subharmonic ones of the smooth-and-discontinuous (SD, for short) differential equation , where and . However, for this oscillator it is easy to find that the known theory cannot be applied directly.
引用
收藏
页码:2477 / 2486
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 1992, An Experimental Approach to Nonlinear Dynamics and Chaos
[2]   Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Michael, J. ;
Thompson, T. ;
Grebogi, Celso .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :635-652
[3]   Archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Grebogi, Celso ;
Thompson, J. Michael T. .
PHYSICAL REVIEW E, 2006, 74 (04)
[4]   The existence of subharmonic solutions with prescribed minimal period for forced pendulum equations with impulses [J].
Chen, Huiwen ;
Li, Jianli ;
He, Zhimin .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) :4189-4198
[5]   Harmonic and subharmonic solutions for superlinear damped Duffing equation [J].
Cheng, Zhibo ;
Ren, Jingli .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) :1155-1170
[6]   Sub-harmonic resonant solutions of a harmonically excited dry friction oscillator [J].
Csernak, G. ;
Stepan, G. ;
Shaw, S. W. .
NONLINEAR DYNAMICS, 2007, 50 (1-2) :93-109
[7]  
DEIMLING K, 1994, DIFFER INTEGRAL EQU, V7, P759
[8]   ON PERIODIC-SOLUTIONS OF SUBLINEAR DUFFING EQUATIONS [J].
DING, TG ;
IANNACCI, R ;
ZANOLIN, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 158 (02) :316-332
[9]  
DING TG, 1981, CHINESE ANN MATH B, V2, P281
[10]  
DING TG, 1982, SCI SIN A-MATH P A T, V25, P918