Acyclic Dominating Partitions

被引:7
作者
Addario-Berry, Louigi [1 ]
Kang, Ross J. [2 ]
Mueller, Tobias [3 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[3] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
graph coloring; acyclic coloring; improper coloring; dominating partitions; subcubic graphs; graphs of bounded maximum degree; COLORINGS;
D O I
10.1002/jgt.20457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G = (V, E), let P be a partition of V. We say that P is dominating if, for each part P of P, the set V\P is a dominating set in G (equivalently, if every vertex has a neighbor of a different part from its own). We say that P is acyclic if for any parts P, P'of P, the bipartite subgraph G[P, P'] consisting of the edges between P and P' in P contains no cycles. The acyclic dominating number ad(G) of G is the least number of parts in any partition of V that is both acyclic and dominating; and we shall denote by ad(d) the maximum over all graphs G of maximum degree at most d of ad(G). In this article, we prove that ad(3) = 2, which establishes a conjecture of P. Boiron, E. Sopena, and L. Vignal, DIMACS/DIMATIA Conference "Contemporary Trends in Discrete Mathematics", 1997, pp. 1-10. For general d, we prove the upper bound ad(d), = O(dIn d) and a lower bound of ad(d) = Omega(d). (C) 2009 Wiley Periodicals, Inc. J Graph Theory 64: 292-311, 2010
引用
收藏
页码:292 / 311
页数:20
相关论文
共 10 条
[1]  
ADDARIOBERRY L, 2009, DISCRETE MATH
[2]  
Albertson M.O., 1976, P 7 SE C COMBINATORI, P51
[3]   ACYCLIC COLORING OF GRAPHS [J].
ALON, N ;
MCDIARMID, C ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) :277-288
[4]  
Boiron P, 1999, J GRAPH THEOR, V32, P97, DOI 10.1002/(SICI)1097-0118(199909)32:1<97::AID-JGT9>3.3.CO
[5]  
2-F
[6]  
BOIRON P, 1997, DIMACS SER DISCRETE, V49, P1
[7]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[8]  
Erdos P., 1975, C MATH SOC J BOLYAI, V10, P609
[9]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
GRUNBAUM, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :390-408
[10]  
JANSON S, 2000, WIL INT S D, pR5, DOI 10.1002/9781118032718