Modules with annihilation property

被引:0
作者
Mohammadi, Rasul [1 ]
Moussavi, Ahmad [1 ]
Zahiri, Masoome [2 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, POB 14115-134, Tehran, Iran
[2] Higher Educ Ctr Eghlid, Dept Math, Eglid, Iran
关键词
Rings with Property(A); local ring; strictly totally ordered monoid; IDEALS; RINGS;
D O I
10.1142/S0219498821501267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be an associative ring with identity. A right R-module MR is said to have Property (A), if each finitely generated ideal I subset of Z(MR) has a nonzero annihilator in MR. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505-512.] proved that, over a commutative ring, zero-divisor modules have Property (A). We study and construct various classes of modules with Property (A). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593-2601.], we introduce G-dual McCoy modules and show that, for every strictly totally ordered monoid G, faithful symmetric modules are G-dual McCoy. We then use this notion to give a characterization for modules with Property (A). For a faithful symmetric right R-module MR and a strictly totally ordered monoid G, it is proved that the right R[G]-module M[G]R[G] is primal if and only if MR is primal with Property (A).
引用
收藏
页数:15
相关论文
共 18 条
  • [1] McCoy modules and related modules over commutative rings
    Anderson, D. D.
    Chun, Sangmin
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) : 2593 - 2601
  • [2] ANDERSON FW, 1998, RINGS CATEGORIES MOD
  • [3] [Anonymous], 1970, Commutative Rings
  • [4] Buhpang A.M., 2002, Arab J. Mathematical Sciences, V18, P53
  • [5] Primal modules
    Dauns, J
    [J]. COMMUNICATIONS IN ALGEBRA, 1997, 25 (08) : 2409 - 2435
  • [6] Evans E. G., 1971, T AM MATH SOC, V155, P505
  • [7] HINKLE GW, 1977, J REINE ANGEW MATH, V292, P25
  • [8] Rings with property (A) and their extensions
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    Ryu, Sung Ju
    [J]. JOURNAL OF ALGEBRA, 2007, 315 (02) : 612 - 628
  • [9] Huckaba J. A., 1988, COMMUTATIVE RINGS ZE
  • [10] ANNIHILATION OF IDEALS IN COMMUTATIVE RINGS
    HUCKABA, JA
    KELLER, JM
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1979, 83 (02) : 375 - 379