Transformations of elliptic hypergeometric integrals

被引:95
作者
Rains, Eric M. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
BETA; REPRESENTATION; SERIES; POLYNOMIALS; EQUATIONS; MATRICES;
D O I
10.4007/annals.2010.171.169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a pair of transformations relating elliptic hypergeometric integrals of different dimensions, corresponding to the root systems BC and An; as a special case, we recover some integral identities conjectured by van Diejen and Spiridonov. For BC, we also consider their "Type II" integral. Their proof of that integral, together with our transformation, gives rise to pairs of adjoint integral operators; a different proof gives rise to pairs of adjoint difference operators. These allow us to construct a family of biorthogonal abelian functions generalizing the Koornwinder polynomials, and satisfying the analogues of the Macdonald conjectures. Finally, we discuss some transformations of Type II-style integrals. In particular, we find that adding two parameters to the Type II integral gives an integral invariant under an appropriate action of the Weyl group E-7.
引用
收藏
页码:169 / 243
页数:75
相关论文
共 38 条
[1]   A SHORT PROOF OF SELBERGS GENERALIZED BETA-FORMULA [J].
ANDERSON, GW .
FORUM MATHEMATICUM, 1991, 3 (04) :415-417
[2]  
[Anonymous], CONT MATH
[3]  
BARSKY D, 1996, ELECT J COMBIN, V3
[4]   GUEs and queues [J].
Baryshnikov, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) :256-274
[5]  
Dixon AL, 1906, P LOND MATH SOC, V3, P206
[6]   Interpretations of some parameter dependent generalizations of classical matrix ensembles [J].
Forrester, PJ ;
Rains, EM .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (01) :1-61
[7]   Application of the τ-function theory of Painleve equations to random matrices:: PVI, the JUE, CyUE, cJUE and scaled limits [J].
Forrester, PJ ;
Witte, NS .
NAGOYA MATHEMATICAL JOURNAL, 2004, 174 :29-114
[8]  
Frobenius G., 1882, J. Reine Angew. Math, V93, P53, DOI DOI 10.1515/CRLL.1882.93.53
[10]   Multiple elliptic hypergeometric series. An approach from the Cauchy determinant [J].
Kajihara, Y ;
Noumi, M .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (3-4) :395-421