A new sufficient condition for local regularity of a suitable weak solution to the MHD equations

被引:2
作者
Neustupa, Jiri [1 ]
Yang, Minsuk [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Yonsei Univ, Dept Math, 50 Yonseiro, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
MHD equations; Regularity; Blow-up; NAVIER-STOKES EQUATIONS; ONE CURRENT-DENSITY; GLOBAL REGULARITY; ONE VELOCITY; MAGNETOHYDRODYNAMICS EQUATIONS; CRITERIA; TERMS;
D O I
10.1016/j.jmaa.2021.125258
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We assume that Omega is either the whole space R-3 or a half-space or a smooth bounded or exterior domain in R-3, T > 0 and (u, b, p) is a suitable weak solution of the MHD equations in Omega x (0, T). We show that (x(0), t(0)) is an element of Omega x (0, T) is a regular point of the solution (u, b, p) if the limit inferior (for t -> t(0)-) of the sum of the L-3-norms of u and b over an arbitrarily small ball B-rho(x(0)) is less than infinity. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 47 条
[1]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[2]  
Borchers W., 1990, Hokkaido Math. J, V19, P67, DOI DOI 10.14492/HOKMJ/1381517172
[3]   Two regularity criteria for the 3D MHD equations [J].
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2263-2274
[4]   On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) :919-930
[5]   Hausdorff Measure of the Singular Set in the Incompressible Magnetohydrodynamic Equations [J].
Choe, Hi Jun ;
Yang, Minsuk .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (01) :171-198
[6]   DIRECTION OF VORTICITY AND THE PROBLEM OF GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FEFFERMAN, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :775-789
[7]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[8]   Logarithmically Improved Regularity Criteria for the Navier-Stokes and MHD Equations [J].
Fan, Jishan ;
Jiang, Song ;
Nakamura, Gen ;
Zhou, Yong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (04) :557-571
[9]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[10]  
Galdi GP, 2000, ADV MATH FLUID MECH, P1