Gaining Acceptance of Novel Plant Breeding Technologies

被引:31
作者
Anders, Sven [1 ]
Cowling, Wallace [2 ,3 ]
Pareek, Ashwani [2 ,3 ,4 ]
Gupta, Kapuganti Jagadis [5 ]
Singla-Pareek, Sneh L. [6 ]
Foyer, Christine H. [7 ]
机构
[1] Univ Alberta, Dept Resource Econ & Environm Sociol, Edmonton, AB T6G 2H1, Canada
[2] Univ Western Australia, UWA Inst Agr, Perth, WA 6009, Australia
[3] Univ Western Australia, UWA Sch Agr & Environm, Perth, WA 6009, Australia
[4] Jawaharlal Nehru Univ, Sch Life Sci, Stress Physiol & Mol Biol Lab, New Delhi 110067, India
[5] Natl Inst Plant Genome Res, Aruna Asaf Ali Rd, New Delhi 110067, India
[6] Int Ctr Genet Engn & Biotechnol, Plant Stress Biol, Aruna Asaf Ali Marg, New Delhi 110067, India
[7] Univ Birmingham, Coll Life & Environm Sci, Sch Biosci, Edgbaston B15 2TT, England
基金
英国生物技术与生命科学研究理事会;
关键词
CROP; RICE;
D O I
10.1016/j.tplants.2021.03.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ensuring the sustainability of agriculture under climate change has led to a surge in alternative strategies for crop improvement. Advances in integrated crop breeding, social acceptance, and farm-level adoption are crucial to address future challenges to food security. Societal acceptance can be slow when consumers do not see the need for innovation or immediate benefits. We consider how best to address the issue of social licence and harmonised governance for novel gene technologies in plant breeding. In addition, we highlight optimised breeding strategies that will enable long-term genetic gains to be achieved. Promoted by harmonised global policy change, innovative plant breeding can realise high and sustainable productivity together with enhanced nutritional traits.
引用
收藏
页码:575 / 587
页数:13
相关论文
共 51 条
  • [31] Global survey of rice breeders to investigate characteristics and willingness to adopt alternative breeding methods
    Lenaerts B.
    Collard B.C.Y.
    Demont M.
    [J]. Agriculture & Food Security, 7 (1):
  • [32] Lipper L, 2014, NAT CLIM CHANGE, V4, P1068, DOI [10.1038/NCLIMATE2437, 10.1038/nclimate2437]
  • [33] Role of transposable elements in heterochromatin and epigenetic control
    Lippman, Z
    Gendrel, AV
    Black, M
    Vaughn, MW
    Dedhia, N
    McCombie, WR
    Lavine, K
    Mittal, V
    May, B
    Kasschau, KD
    Carrington, JC
    Doerge, RW
    Colot, V
    Martienssen, R
    [J]. NATURE, 2004, 430 (6998) : 471 - 476
  • [34] A fast generation cycling system for oat and triticale breeding
    Liu, Hui
    Zwer, Pamela
    Wang, Haibo
    Liu, Chunji
    Lu, Zhanyuan
    Wang, Yanxia
    Yan, Guijun
    [J]. PLANT BREEDING, 2016, 135 (05) : 574 - 579
  • [35] Do consumers care how a genetically engineered food was created or who created it?
    Lusk, Jayson L.
    McFadden, Brandon R.
    Wilson, Norbert
    [J]. FOOD POLICY, 2018, 78 : 81 - 90
  • [36] Climate Change as an Agricultural Economics Research Topic
    McCarl, Bruce A.
    Hertel, Thomas W.
    [J]. APPLIED ECONOMIC PERSPECTIVES AND POLICY, 2018, 40 (01) : 60 - 78
  • [37] Smallholder farmers and contract farming in developing countries
    Meemken, Eva-Marie
    Bellemare, Marc F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (01) : 259 - 264
  • [38] Modulation of Chromatin by Noncoding RNA
    Meller, Victoria H.
    Joshi, Sonal S.
    Deshpande, Nikita
    [J]. ANNUAL REVIEW OF GENETICS, VOL 49, 2015, 49 : 673 - 695
  • [39] Multi-trait Genomic Selection Methods for Crop Improvement
    Moeinizade, Saba
    Kusmec, Aaron
    Hu, Guiping
    Wang, Lizhi
    Schnable, Patrick S.
    [J]. GENETICS, 2020, 215 (04) : 931 - 945
  • [40] The challenges of delivering genetically modified crops with nutritional enhancement traits
    Napier, Johnathan A.
    Haslam, Richard P.
    Tsalavouta, Matina
    Sayanova, Olga
    [J]. NATURE PLANTS, 2019, 5 (06) : 563 - 567