Evolutionary Constrained Multi-objective Optimization using NSGA-II with Dynamic Constraint Handling

被引:11
作者
Jiao, Ruwang [1 ]
Zeng, Sanyou [1 ]
Li, Changhe [2 ,3 ]
Pedrycz, Witold [4 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Hubei, Peoples R China
[4] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
来源
2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2019年
基金
中国国家自然科学基金;
关键词
Evolutionary computation; Constrained optimization; Constraint-handling; Dynamic optimization; Multiobjective optimization; ALGORITHMS;
D O I
10.1109/cec.2019.8790172
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Balancing objectives optimization and constraints satisfaction are two equally important goals for constrained multi-objective optimization problems (CMOPs). However, most studies pay more attention on avoiding violating the constraints than achieving better objectives optimization. To alleviate this issue, this paper presents a dynamic constrained multi-objective evolutionary algorithm (DCMOEA) for handling constraints and optimizing objectives simultaneously. DCMOEA converts a m-objective COP to a dynamic ( m+2)-objective COP. A simple yet effective dynamic niching technique is designed to enhance the population diversity from the decision space. An instantiation of the DCMOEA on NSGA-II (named DCNSGA-II) is implemented, and compared with five representative constraint-handling techniques on 26 well-known CMOPs. The experimental results indicate that the DCNSGA-II is highly competitive in solving CMOPs.
引用
收藏
页码:1634 / 1641
页数:8
相关论文
共 28 条
[1]  
Binh T. T., 1997, 3 INT C GEN ALG, V25
[2]   The balance between proximity and diversity in multiobjective evolutionary algorithms [J].
Bosman, PAN ;
Thierens, D .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :174-188
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]  
Deb K, 2001, WIL INT S SYS OPT
[5]   Push and pull search for solving constrained multi-objective optimization problems [J].
Fan, Zhun ;
Li, Wenji ;
Cai, Xinye ;
Li, Hui ;
Wei, Caimin ;
Zhang, Qingfu ;
Deb, Kalyanmoy ;
Goodman, Erik .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 :665-679
[6]  
Fan Z, 2017, IEEE C EVOL COMPUTAT, P209, DOI 10.1109/CEC.2017.7969315
[7]  
Goldberg D. E., 1987, Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, P41
[8]   Dual-Grid Model of MOEA/D for Evolutionary Constrained Multiobjective Optimization [J].
Ishibuchi, Hisao ;
Fukase, Takefumi ;
Masuyama, Naoki ;
Nojima, Yusuke .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :665-672
[9]   An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach [J].
Jain, Himanshu ;
Deb, Kalyanmoy .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) :602-622
[10]  
Jiao R., 2018, P GEN EV COMP C COMP, P213, DOI DOI 10.1145/3205651.3205653