On pseudo supports and non-Cohen-Macaulay locus of finitely generated modules

被引:7
作者
Nguyen Tu Cuong [1 ]
Le Thanh Nhan [2 ]
Nguyen Thi Kieu Nga [3 ]
机构
[1] Inst Math, Hanoi 10307, Vietnam
[2] Thai Nguyen Coll Sci, Thai Nguyen, Vietnam
[3] Hanoi Pedag Univ, Vinh Phuc, Vietnam
关键词
Pseudo supports; Non-Cohen-Macaulay locus; Catenarity; Serre conditions; Unmixedness; LOCAL COHOMOLOGY MODULES; CATENARICITY; DIMENSION; RINGS;
D O I
10.1016/j.jalgebra.2010.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a Noetherian local ring and M a finitely generated R-module with dim M = d. Let i >= 0 be an integer. Following M. Brodmann and R.Y. Sharp (2002) [BS1], the i-th pseudo support of M is the set of all prime ideals p of R such that H(pRp)(i-dim(R/p))(M(p)) not equal 0. In this paper, we study the pseudo supports and the non-Cohen-Macaulay locus of M in connections with the catenarity of the ring R/Ann(R) M, the Serre conditions on M, and the unmixedness of the local rings R/p for certain prime ideals p in Supp(R)(M). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3029 / 3038
页数:10
相关论文
共 14 条