THE BOUNDEDNESS OF MARCINKIEWICZ INTEGRAL WITH VARIABLE KERNEL

被引:4
作者
Lin, Chin-Cheng [1 ]
Lin, Ying-Chieh [1 ]
Tao, Xiangxing [2 ]
Yu, Xiao [2 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 320, Taiwan
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
OPERATORS;
D O I
10.1215/ijm/1264170846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the fractional Marcinkiewicz integral with variable kernel defined by mu Omega,alpha(f)(x) = (integral(infinity)(0)vertical bar integral(vertical bar x-y vertical bar <= t) Omega(x, x - y)/vertical bar x - y vertical bar(n - 1)f(y) dy vertical bar(2)dt/t3-alpha)(1/2) where 0 < alpha <= 2. We first prove that mu Omega,alpha is bounded from L2n/n+alpha(R-n) to L-2(R-n) without any smoothness assumption on the kernel Omega. Then we show that, if the kernel Omega satisfies a class of Dini condition, mu Omega,alpha is bounded from H-p (R-n) (p <= 1) to H-q (R-n), where = 1/q = 1/p - alpha/2n. As corollary of the above results, we obtain the L-p - L-q (1 < p < 2) botmdedness of this fractional Marcinkiewicz integral.
引用
收藏
页码:197 / 217
页数:21
相关论文
共 24 条
[1]   SOME INEQUALITIES FOR MAXIMAL OPERATORS [J].
AGUILERA, NE ;
HARBOURE, EO .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (04) :559-576
[2]  
[Anonymous], 1997, Cambridge Studies in Advanced Math.
[3]  
[Anonymous], 1978, Appl Anal, DOI 10.1080/00036817808839193
[4]  
[Anonymous], 1985, Weighted Norm Inequalities and Related Topics
[5]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[6]   Boundedness of operators on Hardy spaces via atomic decompositions [J].
Bownik, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3535-3542
[7]  
Calderon A.P., 1955, T AM MATHSOC, V78, P209
[8]   On the Marcinkiewicz integral with variable kernels [J].
Ding, Y ;
Lin, CC ;
Shao, SL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (03) :805-821
[9]   Marcinkiewicz integral on weighted Hardy spaces [J].
Ding, Y ;
Lee, MY ;
Lin, CC .
ARCHIV DER MATHEMATIK, 2003, 80 (06) :620-629
[10]  
Ding Y, 2007, INDIANA U MATH J, V56, P991